Логотип Soware
Логотип Soware

Системы прогнозной аналитики

Программные обеспечение прогнозной аналитики (ПА, англ. Forecasting analytics systems, FA) позволяет анализировать массивы исторических данных для прогнозирования будущих показателей и результатов.

Для того чтобы соответствовать категории систем прогнозной аналитики, они должны иметь следующие функциональные возможности:

  • Использование алгоритмов машинного обучения и искусственного интеллекта для построения моделей прогнозирования на основе исторических данных.

  • Возможность работы с разнородными данными, включая структурированные и неструктурированные данные, для повышения точности прогнозов.

  • Визуализация результатов прогнозирования для наглядного представления возможных сценариев развития событий.

  • Поддержка многомерного анализа данных для выявления сложных взаимосвязей между различными факторами, влияющими на прогнозируемые показатели.

  • Автоматическая корректировка моделей на основе новых данных для поддержания актуальности прогнозов.

Сравнение Системы прогнозной аналитики

Выбрать по критериям:

Категории
Подходит для
Функции
Особенности
Тарификация
Развёртывание
Графический интерфейс
Поддержка языков
Сортировать:
Систем: 8
Логотип In-DAP

In-DAP от Innostage Центр Разработок

In-DAP - платформа поддержки принятия управленческих решений, позволяющая при помощи инструментов Models, Indicators и Prisma разрабатывать аналитические модели и работать с показателями деятельности компании, в том числе по информационной безопасности.. Аналитическая платформа Innostage Data Analysis Platform (In-DAP, рус. Ин-ДАП) предназначена дл ... Узнать больше про In-DAP

Логотип Loginom

Loginom от Loginom company

Loginom – это аналитическая low-code платформа, обеспечивающая интеграцию, очистку и анализ данных для принятия более эффективных управленческих решений. Программный продукт Loginom (рус. Лоджином) от компании Loginom company предназначен для анализа и обработки бизнес-данных на базе методов визуального проектирования, является универсальным констр ... Узнать больше про Loginom

Логотип Форсайт. Аналитическая платформа

Форсайт. Аналитическая платформа от Форсайт

Форсайт. Аналитическая платформа – это программный комплекс для интеллектуального анализа данных, позволяющий эффективно визуализировать информацию для обеспечения принятия бизнес-решений на основе надёжных данных. Узнать больше про Форсайт. Аналитическая платформа

Логотип KNIME Analytics Platform

KNIME Analytics Platform от KNIME

KNIME Analytics Platform – это программная платформа анализа, интеграции данных и подготовки отчётности с открытым исходным кодом. Узнать больше про KNIME Analytics Platform

Логотип SAS Enterprise Miner

SAS Enterprise Miner от SAS

SAS Enterprise Miner – это платформа для оптимизации процесса интеллектуального анализа данных при разработке описательных и прогнозных моделей с использованием структурированных алгоритмов и визуальных показателей оценки. Узнать больше про SAS Enterprise Miner

Логотип SAP Analytics Cloud

SAP Analytics Cloud от SAP SE

SAP Analytics Cloud – это аналитическое решение, предоставляющее аналитические возможности по работе с данными: бизнес-аналитику, планирование и прогнозирование для сотрудников разных подразделений в режиме реального времени. Узнать больше про SAP Analytics Cloud

Логотип Видеоинтеллект

Видеоинтеллект от Видеоинтеллект

Видеоинтеллект – это программная система интеллектуализации видеонаблюдения для проведения автоматического анализа видеопотока и предиктивной видеоаналитики при помощи технологий AI и ML. Узнать больше про Видеоинтеллект

Логотип Logi Predict

Logi Predict от Logi Analytics

Logi Predict – это аналитическое приложение, позволяющее анализировать информацию и прогнозировать вариантов возможных событий, обеспечиввая тем самым возможность встроить алгоритмы машинного обучения и прогностические модели в любой программный продукт. Узнать больше про Logi Predict

Руководство по покупке Системы прогнозной аналитики

1. Что такое Системы прогнозной аналитики

Программные обеспечение прогнозной аналитики (ПА, англ. Forecasting analytics systems, FA) позволяет анализировать массивы исторических данных для прогнозирования будущих показателей и результатов.

2. Зачем бизнесу Системы прогнозной аналитики

Прогнозная аналитика - это процесс, который использует статистические методы и алгоритмы машинного обучения для определения вероятных будущих значений и событий в бизнесе. Данный процесс позволяет предсказывать спрос на продукцию или услуги, анализировать потребительские тренды, определять сроки выполнения проектов и получать прочие полезные выводы о будущем развитии организации.

Прогнозная аналитика позволяет организациям оптимизировать свою деятельность и принимать более интеллектуальные решения на основе данных.

3. Назначение и цели использования Системы прогнозной аналитики

Системы прогнозной аналитики предназначены для анализа текущих и исторических данных с целью определения вероятных будущих событий и поведения. Они используют статистические методы, алгоритмы машинного обучения и сложное прогнозное моделирование для оценки вероятности того, что что-то произойдет, даже если это не находится на радаре бизнеса.

Прогнозная аналитика играет ключевую роль в различных отраслях, помогая компаниям прогнозировать движение денежных средств, сокращать отток сотрудников и клиентов, поддерживать прогнозирование продаж, настраивать оптимальное ценообразование, отслеживать необходимость технического обслуживания или замены оборудования, а также эффективно управлять цепочками поставок. В здравоохранении она используется для улучшения клинических результатов, обнаружения ранних признаков ухудшения состояния пациента и повышения точности диагностики и лечения. В розничной торговле системы прогнозной аналитики применяются для оптимизации запасов, прогнозирования выручки и анализа поведения покупателей.

4. Обзор основных функций и возможностей Системы прогнозной аналитики

Администрирование
Возможность администрирования позволяет осуществлять настройку и управление функциональностью системы, а также управление учётными записями и правами доступа к системе.
Анализ больших данных
Функции Анализа больших данных (англ. Big Data Analysis, BDA) реализуют поддержку очень больших наборов данных для исследования предметной области, построения сложных моделей обработки данных и выявления неявных тенденций
Визуализация данных
Функции Визуализация данных позволяет пользователям выявлять причинно-следственные связи событий, формировать гипотезы или проверять идеи на основании визуального анализа данных
Импорт/экспорт данных
Возможность импорта и/или экспорта данных в продукте позволяет загрузить данные из наиболее популярных файловых форматов или выгрузить рабочие данные в файл для дальнейшего использования в другом ПО.
Индикация трендов и проблем
Функции Индикации трендов и проблем позволяют пользователям настроить автоматическое определение интересующих событий исходя из набора признаков и факторов
Интеллектуальный анализ данных (ИАД)
Функции Интеллектуального анализа данных (ИАД, англ Data Mining, DM) реализуют поиск неочевидных закономерностей, тенденций или извлечения иной информации из больших наборов данных с помощью графических или других инструментов
Машинное обучение
Функции Машинного обучения (англ. Machine Learning, ML) позволяют использовать для решения поставленных задач обучающиеся алгоритмы, проводя исследования на множестве аналогичных заданий, для полной или частичной автоматизации процессов принятия решений, управления рисками и т.д.
Многопользовательский доступ
Возможность многопользовательской доступа в программную систему обеспечивает одновременную работу нескольких пользователей на одной базе данных под собственными учётными записями. Пользователи в этом случае могут иметь отличающиеся права доступа к данным и функциям программного обеспечения.
Наличие API
Часто при использовании современного делового программного обеспечения возникает потребность автоматической передачи данных из одного ПО в другое. Например, может быть полезно автоматически передавать данные из Системы управления взаимоотношениями с клиентами (CRM) в Систему бухгалтерского учёта (БУ). Для обеспечения такого и подобных сопряжений программные системы оснащаются специальными Прикладными программными интерфейсами (англ. API, Application Programming Interface). С помощью таких API любые компетентные программисты смогут связать два программных продукта между собой для автоматического обмена информацией.
Отчётность и аналитика
Наличие у продукта функций подготовки отчётности и/или аналитики позволяют получать систематизированные и визуализированные данные из системы для последующего анализа и принятия решений на основе данных.
Потоковая аналитика
Функции Потоковой аналитики данных позволяют «на лету» применять аналитические алгоритмы над данными в режиме реального времени для отслеживания ключевых показателей бизнес-процессов
Прогнозирование и предсказательная аналитика
Функции Прогнозирования и Предсказательной аналитики позволяют пользователям составлять прогнозы предстоящих затрат, продаж, доходов и иных событий на основании прошлых данных с использованием различных статистических методов прогнозирования
Статистический анализ
Функции Статистического анализа дают пользователю инструментарий по математической организации данных, их исследованию, математической интерпретации и представлении данных, а также о выявлении регулярных закономерностей и тенденций
Интерактивная аналитическая обработка (OLAP)
Интерактивная аналитическая обработка (англ. OLAP) позволяет пользователям в реальном времени (онлайн) оперативно получать агрегированную информацию на основе больших массивов данных
Коннекторы для источников данных
Коннекторы для источников данных подразумевает либо преднастроенную интеграцию со сторонними источниками данных, либо возможность настройки данного взаимодействия на основе гибкого прикладного программного интерфейса (англ. Application Programming Interface, API)

5. Выгоды, преимущества и польза от применения Системы прогнозной аналитики

Применение программной системы прогнозной аналитики имеет ряд ценностей:

  • Повышение точности прогнозирования. Программные системы прогнозной аналитики используют большое количество данных и аналитических методов, что повышает точность прогнозирования будущих событий и трендов.

  • Увеличение эффективности бизнеса. Системы прогнозной аналитики помогают бизнесу увидеть тренды и потребности рынка заблаговременно, что позволяет им предугадать и адаптироваться к изменению рынка.

  • Уменьшение рисков. Предупреждение негативных событий и рисков позволяет бизнесу предпринимать усилия по их снижению заблаговременно.

  • Улучшение процесса принятия решений. Программные системы прогнозной аналитики помогают бизнесу принимать более обоснованные решения на основе цифровых данных и аналитических выводов.

  • Увеличение конкурентоспособности. Применение программных систем прогнозной аналитики дает бизнесу преимущество перед конкурентами, которые пока не определились с новыми тенденциями рынка.

6. Отличительные черты Системы прогнозной аналитики

Для того чтобы соответствовать категории систем прогнозной аналитики, они должны иметь следующие функциональные возможности:

  • Использование алгоритмов машинного обучения и искусственного интеллекта для построения моделей прогнозирования на основе исторических данных.

  • Возможность работы с разнородными данными, включая структурированные и неструктурированные данные, для повышения точности прогнозов.

  • Визуализация результатов прогнозирования для наглядного представления возможных сценариев развития событий.

  • Поддержка многомерного анализа данных для выявления сложных взаимосвязей между различными факторами, влияющими на прогнозируемые показатели.

  • Автоматическая корректировка моделей на основе новых данных для поддержания актуальности прогнозов.

Сравнение Системы прогнозной аналитики

Систем: 8

In-DAP

Innostage Центр Разработок

Логотип системы In-DAP

In-DAP - платформа поддержки принятия управленческих решений, позволяющая при помощи инструментов Models, Indicators и Prisma разрабатывать аналитические модели и работать с показателями деятельности компании, в том числе по информационной безопасности.. Аналитическая платформа Innostage Data Analysis Platform (In-DAP, рус. Ин-ДАП) предназначена для решения нестандартных, ситуационных задач связанных с проведением различн ...

Loginom

Loginom company

Логотип системы Loginom

Loginom – это аналитическая low-code платформа, обеспечивающая интеграцию, очистку и анализ данных для принятия более эффективных управленческих решений. Программный продукт Loginom (рус. Лоджином) от компании Loginom company предназначен для анализа и обработки бизнес-данных на базе методов визуального проектирования, является универсальным конструктором с набором готовых компонентов. Делает продвинутую аналитику доступн ...

Форсайт. Аналитическая платформа

Форсайт

Логотип системы Форсайт. Аналитическая платформа

Форсайт. Аналитическая платформа – это программный комплекс для интеллектуального анализа данных, позволяющий эффективно визуализировать информацию для обеспечения принятия бизнес-решений на основе надёжных данных.

KNIME Analytics Platform

KNIME

Логотип системы KNIME Analytics Platform

KNIME Analytics Platform – это программная платформа анализа, интеграции данных и подготовки отчётности с открытым исходным кодом.

SAS Enterprise Miner

SAS

Логотип системы SAS Enterprise Miner

SAS Enterprise Miner – это платформа для оптимизации процесса интеллектуального анализа данных при разработке описательных и прогнозных моделей с использованием структурированных алгоритмов и визуальных показателей оценки.

SAP Analytics Cloud

SAP SE

Логотип системы SAP Analytics Cloud

SAP Analytics Cloud – это аналитическое решение, предоставляющее аналитические возможности по работе с данными: бизнес-аналитику, планирование и прогнозирование для сотрудников разных подразделений в режиме реального времени.

Видеоинтеллект

Видеоинтеллект

Логотип системы Видеоинтеллект

Видеоинтеллект – это программная система интеллектуализации видеонаблюдения для проведения автоматического анализа видеопотока и предиктивной видеоаналитики при помощи технологий AI и ML.

Logi Predict

Logi Analytics

Логотип системы Logi Predict

Logi Predict – это аналитическое приложение, позволяющее анализировать информацию и прогнозировать вариантов возможных событий, обеспечиввая тем самым возможность встроить алгоритмы машинного обучения и прогностические модели в любой программный продукт.

Руководство по покупке Системы прогнозной аналитики

Что такое Системы прогнозной аналитики

Программные обеспечение прогнозной аналитики (ПА, англ. Forecasting analytics systems, FA) позволяет анализировать массивы исторических данных для прогнозирования будущих показателей и результатов.

Зачем бизнесу Системы прогнозной аналитики

Прогнозная аналитика - это процесс, который использует статистические методы и алгоритмы машинного обучения для определения вероятных будущих значений и событий в бизнесе. Данный процесс позволяет предсказывать спрос на продукцию или услуги, анализировать потребительские тренды, определять сроки выполнения проектов и получать прочие полезные выводы о будущем развитии организации.

Прогнозная аналитика позволяет организациям оптимизировать свою деятельность и принимать более интеллектуальные решения на основе данных.

Назначение и цели использования Системы прогнозной аналитики

Системы прогнозной аналитики предназначены для анализа текущих и исторических данных с целью определения вероятных будущих событий и поведения. Они используют статистические методы, алгоритмы машинного обучения и сложное прогнозное моделирование для оценки вероятности того, что что-то произойдет, даже если это не находится на радаре бизнеса.

Прогнозная аналитика играет ключевую роль в различных отраслях, помогая компаниям прогнозировать движение денежных средств, сокращать отток сотрудников и клиентов, поддерживать прогнозирование продаж, настраивать оптимальное ценообразование, отслеживать необходимость технического обслуживания или замены оборудования, а также эффективно управлять цепочками поставок. В здравоохранении она используется для улучшения клинических результатов, обнаружения ранних признаков ухудшения состояния пациента и повышения точности диагностики и лечения. В розничной торговле системы прогнозной аналитики применяются для оптимизации запасов, прогнозирования выручки и анализа поведения покупателей.

Обзор основных функций и возможностей Системы прогнозной аналитики
Администрирование
Возможность администрирования позволяет осуществлять настройку и управление функциональностью системы, а также управление учётными записями и правами доступа к системе.
Анализ больших данных
Функции Анализа больших данных (англ. Big Data Analysis, BDA) реализуют поддержку очень больших наборов данных для исследования предметной области, построения сложных моделей обработки данных и выявления неявных тенденций
Визуализация данных
Функции Визуализация данных позволяет пользователям выявлять причинно-следственные связи событий, формировать гипотезы или проверять идеи на основании визуального анализа данных
Импорт/экспорт данных
Возможность импорта и/или экспорта данных в продукте позволяет загрузить данные из наиболее популярных файловых форматов или выгрузить рабочие данные в файл для дальнейшего использования в другом ПО.
Индикация трендов и проблем
Функции Индикации трендов и проблем позволяют пользователям настроить автоматическое определение интересующих событий исходя из набора признаков и факторов
Интеллектуальный анализ данных (ИАД)
Функции Интеллектуального анализа данных (ИАД, англ Data Mining, DM) реализуют поиск неочевидных закономерностей, тенденций или извлечения иной информации из больших наборов данных с помощью графических или других инструментов
Машинное обучение
Функции Машинного обучения (англ. Machine Learning, ML) позволяют использовать для решения поставленных задач обучающиеся алгоритмы, проводя исследования на множестве аналогичных заданий, для полной или частичной автоматизации процессов принятия решений, управления рисками и т.д.
Многопользовательский доступ
Возможность многопользовательской доступа в программную систему обеспечивает одновременную работу нескольких пользователей на одной базе данных под собственными учётными записями. Пользователи в этом случае могут иметь отличающиеся права доступа к данным и функциям программного обеспечения.
Наличие API
Часто при использовании современного делового программного обеспечения возникает потребность автоматической передачи данных из одного ПО в другое. Например, может быть полезно автоматически передавать данные из Системы управления взаимоотношениями с клиентами (CRM) в Систему бухгалтерского учёта (БУ). Для обеспечения такого и подобных сопряжений программные системы оснащаются специальными Прикладными программными интерфейсами (англ. API, Application Programming Interface). С помощью таких API любые компетентные программисты смогут связать два программных продукта между собой для автоматического обмена информацией.
Отчётность и аналитика
Наличие у продукта функций подготовки отчётности и/или аналитики позволяют получать систематизированные и визуализированные данные из системы для последующего анализа и принятия решений на основе данных.
Потоковая аналитика
Функции Потоковой аналитики данных позволяют «на лету» применять аналитические алгоритмы над данными в режиме реального времени для отслеживания ключевых показателей бизнес-процессов
Прогнозирование и предсказательная аналитика
Функции Прогнозирования и Предсказательной аналитики позволяют пользователям составлять прогнозы предстоящих затрат, продаж, доходов и иных событий на основании прошлых данных с использованием различных статистических методов прогнозирования
Статистический анализ
Функции Статистического анализа дают пользователю инструментарий по математической организации данных, их исследованию, математической интерпретации и представлении данных, а также о выявлении регулярных закономерностей и тенденций
Интерактивная аналитическая обработка (OLAP)
Интерактивная аналитическая обработка (англ. OLAP) позволяет пользователям в реальном времени (онлайн) оперативно получать агрегированную информацию на основе больших массивов данных
Коннекторы для источников данных
Коннекторы для источников данных подразумевает либо преднастроенную интеграцию со сторонними источниками данных, либо возможность настройки данного взаимодействия на основе гибкого прикладного программного интерфейса (англ. Application Programming Interface, API)
Выгоды, преимущества и польза от применения Системы прогнозной аналитики

Применение программной системы прогнозной аналитики имеет ряд ценностей:

  • Повышение точности прогнозирования. Программные системы прогнозной аналитики используют большое количество данных и аналитических методов, что повышает точность прогнозирования будущих событий и трендов.

  • Увеличение эффективности бизнеса. Системы прогнозной аналитики помогают бизнесу увидеть тренды и потребности рынка заблаговременно, что позволяет им предугадать и адаптироваться к изменению рынка.

  • Уменьшение рисков. Предупреждение негативных событий и рисков позволяет бизнесу предпринимать усилия по их снижению заблаговременно.

  • Улучшение процесса принятия решений. Программные системы прогнозной аналитики помогают бизнесу принимать более обоснованные решения на основе цифровых данных и аналитических выводов.

  • Увеличение конкурентоспособности. Применение программных систем прогнозной аналитики дает бизнесу преимущество перед конкурентами, которые пока не определились с новыми тенденциями рынка.

Отличительные черты Системы прогнозной аналитики

Для того чтобы соответствовать категории систем прогнозной аналитики, они должны иметь следующие функциональные возможности:

  • Использование алгоритмов машинного обучения и искусственного интеллекта для построения моделей прогнозирования на основе исторических данных.

  • Возможность работы с разнородными данными, включая структурированные и неструктурированные данные, для повышения точности прогнозов.

  • Визуализация результатов прогнозирования для наглядного представления возможных сценариев развития событий.

  • Поддержка многомерного анализа данных для выявления сложных взаимосвязей между различными факторами, влияющими на прогнозируемые показатели.

  • Автоматическая корректировка моделей на основе новых данных для поддержания актуальности прогнозов.

Soware логотип
Soware является основным источником сведений о прикладном программном обеспечении для предприятий. Используя наш обширный каталог категорий и программных продуктов, лица, принимающие решения в России и странах СНГ получают бесплатный инструмент для выбора и сравнения систем от разных разработчиков
Соваре, ООО Санкт-Петербург, Россия info@soware.ru
2024 Soware.Ru - Умный выбор систем для бизнеса