Логотип Soware
Логотип Soware

Системы статистической обработки информации (ССОИ) c функцией Наличие API

Системы статистической обработки (ССО, англ. Statistical processing systems, SP) предназначены для организации, статистического исследования, интерпретации, преобразования и представления выбранных наборов данных.

Для того чтобы соответствовать категории систем статистической обработки информации, они должны иметь следующие функциональные возможности:

  • Широкий спектр статистических методов для анализа данных, включая описательную статистику, проверку гипотез, корреляционный и регрессионный анализ, факторный анализ и многое другое.

  • Простота использования для пользователей с различным уровнем подготовки, включая интуитивно понятный интерфейс и подробную документацию.

  • Работа с большими объёмами данных и поддержка различных форматов файлов для импорта и экспорта данных.

  • Графические возможности для визуализации результатов анализа, включая создание диаграмм, графиков и таблиц.

  • Автоматическая организация процесса обработки данных и составление отчётов о результатах анализа для упрощения интерпретации полученных результатов.

Сравнение Системы статистической обработки информации (ССОИ)

Выбрать по критериям:

Категории
Подходит для
Функции
Особенности
Тарификация
Развёртывание
Графический интерфейс
Поддержка языков
Сортировать:
Систем: 5
Логотип In-DAP

In-DAP от Innostage Центр Разработок

In-DAP - платформа поддержки принятия управленческих решений, позволяющая при помощи инструментов Models, Indicators и Prisma разрабатывать аналитические модели и работать с показателями деятельности компании, в том числе по информационной безопасности.. Аналитическая платформа Innostage Data Analysis Platform (In-DAP, рус. Ин-ДАП) предназначена дл ... Узнать больше про In-DAP

Логотип Anaconda

Anaconda от Anaconda

Anaconda – это платформа управления пакетами приложений анализа данных (для языков Python и R) с открытым исходным кодом. Система позволяет специалистам по обработке данных быстро разворачивать проекты машинного обучения, предоставляя необходимую информацию для лиц, при ... Узнать больше про Anaconda

Логотип IQPLATFORM

IQPLATFORM от Айкумен ИБС

IQPLATFORM – это цифровая аналитическая платформа, позволяет выполнять продвинутую аналитику на базе больших объёмов информации, синтез новых знаний и мониторинг и контроль информационных объектов. Узнать больше про IQPLATFORM

Логотип Polymatica

Polymatica от Полиматика Рус

Polymatica – это аналитическая платформа для анализа больших объёмов данных в интерактивном режиме. Используется как самостоятельная система и как часть комплексного решения, обеспечивая быструю обработку данных и ad-hoc аналитику. Узнать больше про Polymatica

Логотип TIBCO Data Science

TIBCO Data Science от TIBCO

TIBCO Data Science – это комплексная аналитическая платформа, позволяющая применять полный комплекс современных аналитических методов над деловыми данными компании. Узнать больше про TIBCO Data Science

Руководство по покупке Системы статистической обработки информации

1. Что такое Системы статистической обработки информации

Системы статистической обработки (ССО, англ. Statistical processing systems, SP) предназначены для организации, статистического исследования, интерпретации, преобразования и представления выбранных наборов данных.

2. Зачем бизнесу Системы статистической обработки информации

Статистическая обработка информации – это процесс сбора, анализа и интерпретации данных с целью выявления закономерностей и трендов в исследуемых явлениях и явлениях, а также оценки вероятности их возникновения в будущем.

Данный процесс широко используется в различных областях, таких как наука, экономика, маркетинг, социология, медицина и другие, для принятия решений на основе собранных данных.

В ходе статистической обработки информации используются различные методы и техники, такие как группировка и классификация данных, расчёт показателей тенденции и разброса, корреляционный анализ, регрессионный анализ.

3. Назначение и цели использования Системы статистической обработки информации

Системы статистической обработки информации предназначены для анализа и интерпретации больших объёмов данных с целью выявления значимых закономерностей, тенденций и зависимостей. Они играют ключевую роль в научных исследованиях, бизнесе, медицине и многих других областях, где требуется глубокое понимание данных для принятия обоснованных решений.

Статистическая обработка информации включает в себя широкий спектр методов и инструментов, таких как описательная статистика, проверка гипотез, корреляционный и регрессионный анализ, факторный анализ и многое другое. Эти методы позволяют исследователям и аналитикам выявлять скрытые взаимосвязи между переменными, оценивать достоверность полученных результатов, сравнивать различные группы данных и делать выводы на основе проведённого анализа.

4. Обзор основных функций и возможностей Системы статистической обработки информации

Администрирование
Возможность администрирования позволяет осуществлять настройку и управление функциональностью системы, а также управление учётными записями и правами доступа к системе.
Анализ больших данных
Функции Анализа больших данных (англ. Big Data Analysis, BDA) реализуют поддержку очень больших наборов данных для исследования предметной области, построения сложных моделей обработки данных и выявления неявных тенденций
Визуализация данных
Функции Визуализация данных позволяет пользователям выявлять причинно-следственные связи событий, формировать гипотезы или проверять идеи на основании визуального анализа данных
Импорт/экспорт данных
Возможность импорта и/или экспорта данных в продукте позволяет загрузить данные из наиболее популярных файловых форматов или выгрузить рабочие данные в файл для дальнейшего использования в другом ПО.
Индикация трендов и проблем
Функции Индикации трендов и проблем позволяют пользователям настроить автоматическое определение интересующих событий исходя из набора признаков и факторов
Интеллектуальный анализ данных (ИАД)
Функции Интеллектуального анализа данных (ИАД, англ Data Mining, DM) реализуют поиск неочевидных закономерностей, тенденций или извлечения иной информации из больших наборов данных с помощью графических или других инструментов
Машинное обучение
Функции Машинного обучения (англ. Machine Learning, ML) позволяют использовать для решения поставленных задач обучающиеся алгоритмы, проводя исследования на множестве аналогичных заданий, для полной или частичной автоматизации процессов принятия решений, управления рисками и т.д.
Многопользовательский доступ
Возможность многопользовательской доступа в программную систему обеспечивает одновременную работу нескольких пользователей на одной базе данных под собственными учётными записями. Пользователи в этом случае могут иметь отличающиеся права доступа к данным и функциям программного обеспечения.
Наличие API
Часто при использовании современного делового программного обеспечения возникает потребность автоматической передачи данных из одного ПО в другое. Например, может быть полезно автоматически передавать данные из Системы управления взаимоотношениями с клиентами (CRM) в Систему бухгалтерского учёта (БУ). Для обеспечения такого и подобных сопряжений программные системы оснащаются специальными Прикладными программными интерфейсами (англ. API, Application Programming Interface). С помощью таких API любые компетентные программисты смогут связать два программных продукта между собой для автоматического обмена информацией.
Отчётность и аналитика
Наличие у продукта функций подготовки отчётности и/или аналитики позволяют получать систематизированные и визуализированные данные из системы для последующего анализа и принятия решений на основе данных.
Потоковая аналитика
Функции Потоковой аналитики данных позволяют «на лету» применять аналитические алгоритмы над данными в режиме реального времени для отслеживания ключевых показателей бизнес-процессов
Прогнозирование и предсказательная аналитика
Функции Прогнозирования и Предсказательной аналитики позволяют пользователям составлять прогнозы предстоящих затрат, продаж, доходов и иных событий на основании прошлых данных с использованием различных статистических методов прогнозирования
Статистический анализ
Функции Статистического анализа дают пользователю инструментарий по математической организации данных, их исследованию, математической интерпретации и представлении данных, а также о выявлении регулярных закономерностей и тенденций
Интерактивная аналитическая обработка (OLAP)
Интерактивная аналитическая обработка (англ. OLAP) позволяет пользователям в реальном времени (онлайн) оперативно получать агрегированную информацию на основе больших массивов данных
Коннекторы для источников данных
Коннекторы для источников данных подразумевает либо преднастроенную интеграцию со сторонними источниками данных, либо возможность настройки данного взаимодействия на основе гибкого прикладного программного интерфейса (англ. Application Programming Interface, API)

5. Выгоды, преимущества и польза от применения Системы статистической обработки информации

Применение системы статистической обработки информации может иметь следующие полезные эффекты в различных областях:

  • Научные исследования: позволяют проводить анализ полученных данных и выявлять закономерности, взаимосвязи и тенденции в исследуемых явлениях.

  • Бизнес: позволяет управлять бизнес-процессами, оптимизировать затраты, анализировать рынок и конкурентов.

  • Медицина: позволяет проводить анализ результатов медицинских исследований, выявлять факторы риска и эффективность лекарственных препаратов.

  • Социология: позволяет проводить социологические исследования, выявлять статистически значимые различия между группами людей, выявлять тенденции в поведении и мнениях людей.

  • Финансы: позволяет анализировать финансовые операции, выявлять финансовые риски и разрабатывать стратегии для повышения доходности инвестиций.

  • Образование: позволяет проводить анализ результатов образовательных программ, выявлять тенденции и улучшать качество образования.

В целом, программная система статистической обработки информации позволяет улучшить качество и эффективность работы в различных областях, оптимизировать процессы и принимать обоснованные решения на основе анализа данных.

6. Отличительные черты Системы статистической обработки информации

Для того чтобы соответствовать категории систем статистической обработки информации, они должны иметь следующие функциональные возможности:

  • Широкий спектр статистических методов для анализа данных, включая описательную статистику, проверку гипотез, корреляционный и регрессионный анализ, факторный анализ и многое другое.

  • Простота использования для пользователей с различным уровнем подготовки, включая интуитивно понятный интерфейс и подробную документацию.

  • Работа с большими объёмами данных и поддержка различных форматов файлов для импорта и экспорта данных.

  • Графические возможности для визуализации результатов анализа, включая создание диаграмм, графиков и таблиц.

  • Автоматическая организация процесса обработки данных и составление отчётов о результатах анализа для упрощения интерпретации полученных результатов.

Сравнение Системы статистической обработки информации (ССОИ)

Систем: 5

In-DAP

Innostage Центр Разработок

Логотип системы In-DAP

In-DAP - платформа поддержки принятия управленческих решений, позволяющая при помощи инструментов Models, Indicators и Prisma разрабатывать аналитические модели и работать с показателями деятельности компании, в том числе по информационной безопасности.. Аналитическая платформа Innostage Data Analysis Platform (In-DAP, рус. Ин-ДАП) предназначена для решения нестандартных, ситуационных задач связанных с проведением различн ...

Anaconda

Anaconda

Логотип системы Anaconda

Anaconda – это платформа управления пакетами приложений анализа данных (для языков Python и R) с открытым исходным кодом. Система позволяет специалистам по обработке данных быстро разворачивать проекты машинного обучения, предоставляя необходимую информацию для лиц, принимающих решения.

IQPLATFORM

Айкумен ИБС

Логотип системы IQPLATFORM

IQPLATFORM – это цифровая аналитическая платформа, позволяет выполнять продвинутую аналитику на базе больших объёмов информации, синтез новых знаний и мониторинг и контроль информационных объектов.

Polymatica

Полиматика Рус

Логотип системы Polymatica

Polymatica – это аналитическая платформа для анализа больших объёмов данных в интерактивном режиме. Используется как самостоятельная система и как часть комплексного решения, обеспечивая быструю обработку данных и ad-hoc аналитику.

TIBCO Data Science

TIBCO

Логотип системы TIBCO Data Science

TIBCO Data Science – это комплексная аналитическая платформа, позволяющая применять полный комплекс современных аналитических методов над деловыми данными компании.

Руководство по покупке Системы статистической обработки информации

Что такое Системы статистической обработки информации

Системы статистической обработки (ССО, англ. Statistical processing systems, SP) предназначены для организации, статистического исследования, интерпретации, преобразования и представления выбранных наборов данных.

Зачем бизнесу Системы статистической обработки информации

Статистическая обработка информации – это процесс сбора, анализа и интерпретации данных с целью выявления закономерностей и трендов в исследуемых явлениях и явлениях, а также оценки вероятности их возникновения в будущем.

Данный процесс широко используется в различных областях, таких как наука, экономика, маркетинг, социология, медицина и другие, для принятия решений на основе собранных данных.

В ходе статистической обработки информации используются различные методы и техники, такие как группировка и классификация данных, расчёт показателей тенденции и разброса, корреляционный анализ, регрессионный анализ.

Назначение и цели использования Системы статистической обработки информации

Системы статистической обработки информации предназначены для анализа и интерпретации больших объёмов данных с целью выявления значимых закономерностей, тенденций и зависимостей. Они играют ключевую роль в научных исследованиях, бизнесе, медицине и многих других областях, где требуется глубокое понимание данных для принятия обоснованных решений.

Статистическая обработка информации включает в себя широкий спектр методов и инструментов, таких как описательная статистика, проверка гипотез, корреляционный и регрессионный анализ, факторный анализ и многое другое. Эти методы позволяют исследователям и аналитикам выявлять скрытые взаимосвязи между переменными, оценивать достоверность полученных результатов, сравнивать различные группы данных и делать выводы на основе проведённого анализа.

Обзор основных функций и возможностей Системы статистической обработки информации
Администрирование
Возможность администрирования позволяет осуществлять настройку и управление функциональностью системы, а также управление учётными записями и правами доступа к системе.
Анализ больших данных
Функции Анализа больших данных (англ. Big Data Analysis, BDA) реализуют поддержку очень больших наборов данных для исследования предметной области, построения сложных моделей обработки данных и выявления неявных тенденций
Визуализация данных
Функции Визуализация данных позволяет пользователям выявлять причинно-следственные связи событий, формировать гипотезы или проверять идеи на основании визуального анализа данных
Импорт/экспорт данных
Возможность импорта и/или экспорта данных в продукте позволяет загрузить данные из наиболее популярных файловых форматов или выгрузить рабочие данные в файл для дальнейшего использования в другом ПО.
Индикация трендов и проблем
Функции Индикации трендов и проблем позволяют пользователям настроить автоматическое определение интересующих событий исходя из набора признаков и факторов
Интеллектуальный анализ данных (ИАД)
Функции Интеллектуального анализа данных (ИАД, англ Data Mining, DM) реализуют поиск неочевидных закономерностей, тенденций или извлечения иной информации из больших наборов данных с помощью графических или других инструментов
Машинное обучение
Функции Машинного обучения (англ. Machine Learning, ML) позволяют использовать для решения поставленных задач обучающиеся алгоритмы, проводя исследования на множестве аналогичных заданий, для полной или частичной автоматизации процессов принятия решений, управления рисками и т.д.
Многопользовательский доступ
Возможность многопользовательской доступа в программную систему обеспечивает одновременную работу нескольких пользователей на одной базе данных под собственными учётными записями. Пользователи в этом случае могут иметь отличающиеся права доступа к данным и функциям программного обеспечения.
Наличие API
Часто при использовании современного делового программного обеспечения возникает потребность автоматической передачи данных из одного ПО в другое. Например, может быть полезно автоматически передавать данные из Системы управления взаимоотношениями с клиентами (CRM) в Систему бухгалтерского учёта (БУ). Для обеспечения такого и подобных сопряжений программные системы оснащаются специальными Прикладными программными интерфейсами (англ. API, Application Programming Interface). С помощью таких API любые компетентные программисты смогут связать два программных продукта между собой для автоматического обмена информацией.
Отчётность и аналитика
Наличие у продукта функций подготовки отчётности и/или аналитики позволяют получать систематизированные и визуализированные данные из системы для последующего анализа и принятия решений на основе данных.
Потоковая аналитика
Функции Потоковой аналитики данных позволяют «на лету» применять аналитические алгоритмы над данными в режиме реального времени для отслеживания ключевых показателей бизнес-процессов
Прогнозирование и предсказательная аналитика
Функции Прогнозирования и Предсказательной аналитики позволяют пользователям составлять прогнозы предстоящих затрат, продаж, доходов и иных событий на основании прошлых данных с использованием различных статистических методов прогнозирования
Статистический анализ
Функции Статистического анализа дают пользователю инструментарий по математической организации данных, их исследованию, математической интерпретации и представлении данных, а также о выявлении регулярных закономерностей и тенденций
Интерактивная аналитическая обработка (OLAP)
Интерактивная аналитическая обработка (англ. OLAP) позволяет пользователям в реальном времени (онлайн) оперативно получать агрегированную информацию на основе больших массивов данных
Коннекторы для источников данных
Коннекторы для источников данных подразумевает либо преднастроенную интеграцию со сторонними источниками данных, либо возможность настройки данного взаимодействия на основе гибкого прикладного программного интерфейса (англ. Application Programming Interface, API)
Выгоды, преимущества и польза от применения Системы статистической обработки информации

Применение системы статистической обработки информации может иметь следующие полезные эффекты в различных областях:

  • Научные исследования: позволяют проводить анализ полученных данных и выявлять закономерности, взаимосвязи и тенденции в исследуемых явлениях.

  • Бизнес: позволяет управлять бизнес-процессами, оптимизировать затраты, анализировать рынок и конкурентов.

  • Медицина: позволяет проводить анализ результатов медицинских исследований, выявлять факторы риска и эффективность лекарственных препаратов.

  • Социология: позволяет проводить социологические исследования, выявлять статистически значимые различия между группами людей, выявлять тенденции в поведении и мнениях людей.

  • Финансы: позволяет анализировать финансовые операции, выявлять финансовые риски и разрабатывать стратегии для повышения доходности инвестиций.

  • Образование: позволяет проводить анализ результатов образовательных программ, выявлять тенденции и улучшать качество образования.

В целом, программная система статистической обработки информации позволяет улучшить качество и эффективность работы в различных областях, оптимизировать процессы и принимать обоснованные решения на основе анализа данных.

Отличительные черты Системы статистической обработки информации

Для того чтобы соответствовать категории систем статистической обработки информации, они должны иметь следующие функциональные возможности:

  • Широкий спектр статистических методов для анализа данных, включая описательную статистику, проверку гипотез, корреляционный и регрессионный анализ, факторный анализ и многое другое.

  • Простота использования для пользователей с различным уровнем подготовки, включая интуитивно понятный интерфейс и подробную документацию.

  • Работа с большими объёмами данных и поддержка различных форматов файлов для импорта и экспорта данных.

  • Графические возможности для визуализации результатов анализа, включая создание диаграмм, графиков и таблиц.

  • Автоматическая организация процесса обработки данных и составление отчётов о результатах анализа для упрощения интерпретации полученных результатов.

Soware логотип
Soware является основным источником сведений о прикладном программном обеспечении для предприятий. Используя наш обширный каталог категорий и программных продуктов, лица, принимающие решения в России и странах СНГ получают бесплатный инструмент для выбора и сравнения систем от разных разработчиков
Соваре, ООО Санкт-Петербург, Россия info@soware.ru
2024 Soware.Ru - Умный выбор систем для бизнеса