Системы безопасности конечных точек (СБК, англ. End Point Security Systems, EPS) – это комплекс программных и технических решений, предназначенных для защиты компьютеров, мобильных устройств и других конечных точек доступа к сети от различных угроз. Они обеспечивают многоуровневую защиту от вирусов, вредоносного ПО, фишинговых атак и других киберугроз, которые могут проникнуть в корпоративную сеть через уязвимые устройства.
Контур.Доступ — это решение для организации защищённого удалённого доступа к корпоративным ресурсам, обеспечивающее безопасность и удобство работы сотрудников из любой точки мира. Программный продукт Контур.Доступ от компании-разработчика СКБ Контур предназначен для обеспечения возможности удалённого доступа к рабочим станциям и другим конечным уст ... Узнать больше про Контур.Доступ
Стингрей — это платформа анализа защищённости мобильных приложений, которая позволяет находить уязвимости в приложениях для iOS и Android с использованием технологий машинного обучения. Узнать больше про Стингрей
TrustViewerPro — это комплексное решение для организации защищённого удалённого доступа и управления конечными устройствами, обеспечивающее эффективное взаимодействие между пользователями и их рабочими станциями в корпоративной среде. Узнать больше про TrustViewerPro
ViPNet EndPoint Protection — это система безопасности конечных устройств, обеспечивающая защиту от вредоносных программ и киберугроз. Узнать больше про ViPNet EndPoint Protection
ViPNet Personal Firewall — это комплексное решение для обеспечения информационной безопасности на уровне рабочего места пользователя, предоставляющее защиту от несанкционированного доступа и вредоносных программ через мониторинг и контроль сетевого трафика. Узнать больше про ViPNet Personal Firewall
ViPNet SafeBoot — это решение для обеспечения безопасности загрузки операционных систем, которое позволяет защитить компьютер от несанкционированного доступа и вредоносного ПО за счёт контроля целостности загрузочных модулей и проверки подлинности устройств ввода-вывода ... Узнать больше про ViPNet SafeBoot
ViPNet IDS HS — это комплексное решение для обеспечения кибербезопасности, предназначенное для обнаружения и предотвращения сетевых атак и аномалий в режиме реального времени на защищаемых сегментах сети и рабочих станциях. Узнать больше про ViPNet IDS HS
ViPNet SIES Workstation — это программное решение для обеспечения безопасности информационных систем, предоставляющее инструменты для мониторинга, анализа и реагирования на потенциальные угрозы и инциденты в режиме реального времени. Узнать больше про ViPNet SIES Workstation
ViPNet Terminal — это программное решение для обеспечения безопасности конечных устройств в корпоративных сетях. Узнать больше про ViPNet Terminal
ViPNet Client — это программное обеспечение для защиты конечных устройств и обеспечения безопасной работы в сети. Узнать больше про ViPNet Client
ViPNet Client 4U for Linux — это программное обеспечение для защиты конечных устройств в корпоративных сетях посредством шифрования трафика и аутентификации. Узнать больше про ViPNet Client 4U for Linux
StaffCop Enterprise — это система для обнаружения угроз, мониторинга и расследования инцидентов в корпоративных сетях. Узнать больше про StaffCop Enterprise
САКУРА — это комплексное решение для обеспечения кибербезопасности, предназначенное для защиты корпоративных информационных систем от современных угроз и атак за счёт мониторинга и анализа событий безопасности на конечных точках. Узнать больше про САКУРА
Ассистент Удаленный доступ — это система для удалённого управления и мониторинга конечных устройств через сеть. Узнать больше про Ассистент Удаленный доступ
Kaspersky Internet Security — это антивирусное ПО для защиты персональных компьютеров от вредоносных программ и сетевых угроз. Узнать больше про Kaspersky Internet Security
Kaspersky Security Cloud — это комплексное решение для защиты устройств от киберугроз и обеспечения безопасности данных. Узнать больше про Kaspersky Security Cloud
Системы безопасности конечных точек (СБК, англ. End Point Security Systems, EPS) – это комплекс программных и технических решений, предназначенных для защиты компьютеров, мобильных устройств и других конечных точек доступа к сети от различных угроз. Они обеспечивают многоуровневую защиту от вирусов, вредоносного ПО, фишинговых атак и других киберугроз, которые могут проникнуть в корпоративную сеть через уязвимые устройства.
Безопасность конечных точек как деятельность представляет собой комплекс мер, направленных на защиту компьютеров, мобильных устройств и других устройств, имеющих доступ к корпоративной сети или другим информационным системам, от разнообразных киберугроз. Эта деятельность включает в себя внедрение и поддержку программных и технических решений, обеспечивающих обнаружение, предотвращение и устранение угроз, которые могут использовать уязвимости устройств для проникновения в систему и компрометации данных. Особое внимание уделяется защите от вирусов, вредоносного программного обеспечения, фишинговых и других атак, способных нанести значительный ущерб информационной безопасности организации.
Ключевые аспекты данного процесса:
В условиях постоянного роста числа киберугроз и усложнения методов атак значимость цифровых (программных) решений для обеспечения безопасности конечных точек неуклонно возрастает. Эффективные программные продукты позволяют создать многоуровневую систему защиты, минимизировать риски проникновения вредоносного ПО и обеспечить сохранность критически важных данных организации.
Системы безопасности конечных точек предназначены для обеспечения комплексной защиты компьютеров, мобильных устройств и других конечных точек доступа к сети от разнообразных киберугроз. Они реализуют многоуровневый подход к безопасности, включающий обнаружение и предотвращение проникновения вредоносного программного обеспечения, блокирование фишинговых атак, а также защиту от других угроз, которые могут использовать уязвимости устройств для проникновения в корпоративную информационную систему.
Функциональное предназначение систем безопасности конечных точек заключается в минимизации рисков компрометации данных и нарушения работы корпоративных информационных систем. Они позволяют обеспечить непрерывный мониторинг состояния устройств, своевременно выявлять и нейтрализовать потенциальные угрозы, а также способствуют поддержанию целостности и конфиденциальности информации, циркулирующей в корпоративной сети.
Системы безопасности конечных точек в основном используют следующие группы пользователей:
При выборе программного продукта из функционального класса систем безопасности конечных точек (СБК) необходимо учитывать ряд ключевых факторов, которые определяются спецификой деятельности компании, её масштабом, отраслевыми требованиями и техническими возможностями. Важно оценить, насколько продукт способен обеспечить комплексную защиту информационных ресурсов, учесть требования к интеграции с существующей ИТ-инфраструктурой, уровень поддержки и обновления со стороны разработчика, а также соответствие нормативным и регуляторным требованиям, характерным для конкретной отрасли.
— масштаб деятельности компании (малый бизнес, средний и крупный бизнес, транснациональные корпорации); — отраслевая специфика и соответствующие требования к защите данных (финансовый сектор, здравоохранение, образование, промышленность и т. д.); — наличие требований к соответствию стандартам и нормативам (например, требованиям по защите персональных данных, отраслевым стандартам информационной безопасности); — технические ограничения существующей ИТ-инфраструктуры (поддерживаемые операционные системы, аппаратные платформы, ограничения по ресурсам — процессор, оперативная память, место на диске); — необходимость интеграции с другими корпоративными системами (например, с системами управления доступом, сетевыми экранами, системами мониторинга и управления инцидентами безопасности); — требования к функциональности (обнаружение и устранение вирусов и вредоносного ПО, защита от фишинговых атак, мониторинг подозрительной активности, шифрование данных, управление обновлениями программного обеспечения и т. д.); — возможности масштабирования системы в соответствии с ростом компании и увеличением объёма данных и числа устройств; — уровень технической поддержки и частота выпуска обновлений от разработчика; — стоимость владения системой, включая лицензии, обслуживание и возможные дополнительные расходы.
Окончательный выбор программного продукта должен базироваться на детальном анализе текущих и будущих потребностей компании в области информационной безопасности, оценке рисков и потенциальных угроз, а также на способности продукта адаптироваться к изменяющимся условиям и требованиям бизнеса. Необходимо провести сравнительный анализ нескольких решений, учитывая не только их функциональные возможности, но и репутацию разработчика, отзывы пользователей, а также наличие квалифицированных специалистов для внедрения и поддержки системы.
Системы безопасности конечных точек (СБК) играют ключевую роль в обеспечении кибербезопасности организаций. Они позволяют минимизировать риски проникновения угроз в корпоративную сеть и защищают информационные активы. Преимущества использования СБК включают:
Многоуровневая защита. СБК создают несколько уровней защиты, что затрудняет проникновение вредоносного ПО и снижает вероятность успешного осуществления кибератак.
Предотвращение распространения угроз. Системы оперативно обнаруживают и изолируют заражённые устройства, предотвращая распространение вредоносного ПО по сети.
Защита конфиденциальных данных. СБК помогают предотвратить утечку конфиденциальной информации, защищая данные на конечных точках доступа.
Снижение рисков финансовых потерь. Минимизация вероятности кибератак и утечек данных снижает финансовые потери, связанные с восстановлением IT-инфраструктуры и компенсацией ущерба.
Соответствие нормативным требованиям. Использование СБК помогает организациям соблюдать требования законодательства и отраслевых стандартов в области информационной безопасности.
Повышение доверия со стороны клиентов и партнёров. Эффективная система безопасности укрепляет репутацию компании и повышает доверие со стороны бизнес-партнёров и клиентов.
Оптимизация работы IT-отдела. Автоматизация процессов обнаружения и устранения угроз снижает нагрузку на IT-специалистов и позволяет им сосредоточиться на стратегических задачах.
В 2025 году на рынке систем безопасности конечных точек (СБК) можно ожидать усиления тенденций к интеграции продвинутых механизмов машинного обучения и искусственного интеллекта для обнаружения и предотвращения угроз, роста популярности решений с нулевым доверием (Zero Trust), развития технологий защиты контейнеров и облачных сред, а также повышенного внимания к защите IoT-устройств и реализации принципов DevSecOps.
Развитие ИИ-алгоритмов в СБК. Внедрение более сложных моделей машинного обучения для анализа поведенческих паттернов и выявления аномалий, что позволит оперативно обнаруживать и нейтрализовать ранее неизвестные угрозы (zero-day exploits).
Расширение применения Zero Trust. Переход к модели безопасности с нулевым доверием, предполагающей верификацию каждого запроса и устройства, независимо от их местоположения в сети, что повысит общий уровень защищённости корпоративных ресурсов.
Защита контейнерных и облачных сред. Разработка специализированных решений для обеспечения безопасности контейнеров и приложений, развёртываемых в облачной инфраструктуре, с учётом их динамичности и распределённости.
Усиление защиты IoT. Создание интегрированных решений для защиты широкого спектра интернет-вещей (IoT) от киберугроз, учитывая растущее количество подключённых устройств и их уязвимость.
Интеграция DevSecOps. Внедрение принципов непрерывной интеграции безопасности в процессы разработки и эксплуатации ПО, что позволит минимизировать уязвимости на ранних этапах жизненного цикла приложений.
Развитие технологий шифрования. Совершенствование алгоритмов и протоколов шифрования для защиты данных на конечных точках и при их передаче, с учётом растущих требований к конфиденциальности и соответствия нормативным актам.
Автоматизация реагирования на инциденты. Разработка систем, способных автоматически анализировать инциденты безопасности и предпринимать необходимые действия для их нейтрализации, минимизируя время реакции и снижая нагрузку на ИТ-персонал.
СКБ Контур
Контур.Доступ — это решение для организации защищённого удалённого доступа к корпоративным ресурсам, обеспечивающее безопасность и удобство работы сотрудников из любой точки мира. Программный продукт Контур.Доступ от компании-разработчика СКБ Контур предназначен для обеспечения возможности удалённого доступа к рабочим станциям и другим конечным устройствам. Это позволяет пользователям осуществлять управление и взаимодейст ...
Stingray Technologies (ГК Swordfish Security)
Стингрей — это платформа анализа защищённости мобильных приложений, которая позволяет находить уязвимости в приложениях для iOS и Android с использованием технологий машинного обучения.
Trust Ltd
TrustViewerPro — это комплексное решение для организации защищённого удалённого доступа и управления конечными устройствами, обеспечивающее эффективное взаимодействие между пользователями и их рабочими станциями в корпоративной среде.
ИнфоТеКС
ViPNet EndPoint Protection — это система безопасности конечных устройств, обеспечивающая защиту от вредоносных программ и киберугроз.
ИнфоТеКС
ViPNet Personal Firewall — это комплексное решение для обеспечения информационной безопасности на уровне рабочего места пользователя, предоставляющее защиту от несанкционированного доступа и вредоносных программ через мониторинг и контроль сетевого трафика.
ИнфоТеКС
ViPNet SafeBoot — это решение для обеспечения безопасности загрузки операционных систем, которое позволяет защитить компьютер от несанкционированного доступа и вредоносного ПО за счёт контроля целостности загрузочных модулей и проверки подлинности устройств ввода-вывода.
ИнфоТеКС
ViPNet IDS HS — это комплексное решение для обеспечения кибербезопасности, предназначенное для обнаружения и предотвращения сетевых атак и аномалий в режиме реального времени на защищаемых сегментах сети и рабочих станциях.
ИнфоТеКС
ViPNet SIES Workstation — это программное решение для обеспечения безопасности информационных систем, предоставляющее инструменты для мониторинга, анализа и реагирования на потенциальные угрозы и инциденты в режиме реального времени.
ИнфоТеКС
ViPNet Terminal — это программное решение для обеспечения безопасности конечных устройств в корпоративных сетях.
ИнфоТеКС
ViPNet Client — это программное обеспечение для защиты конечных устройств и обеспечения безопасной работы в сети.
ИнфоТеКС
ViPNet Client 4U for Linux — это программное обеспечение для защиты конечных устройств в корпоративных сетях посредством шифрования трафика и аутентификации.
Атом Безопасность
StaffCop Enterprise — это система для обнаружения угроз, мониторинга и расследования инцидентов в корпоративных сетях.
ИТ-Экспертиза
САКУРА — это комплексное решение для обеспечения кибербезопасности, предназначенное для защиты корпоративных информационных систем от современных угроз и атак за счёт мониторинга и анализа событий безопасности на конечных точках.
Сафиб
Ассистент Удаленный доступ — это система для удалённого управления и мониторинга конечных устройств через сеть.
Лаборатория Касперского
Kaspersky Internet Security — это антивирусное ПО для защиты персональных компьютеров от вредоносных программ и сетевых угроз.
Лаборатория Касперского
Kaspersky Security Cloud — это комплексное решение для защиты устройств от киберугроз и обеспечения безопасности данных.
Системы безопасности конечных точек (СБК, англ. End Point Security Systems, EPS) – это комплекс программных и технических решений, предназначенных для защиты компьютеров, мобильных устройств и других конечных точек доступа к сети от различных угроз. Они обеспечивают многоуровневую защиту от вирусов, вредоносного ПО, фишинговых атак и других киберугроз, которые могут проникнуть в корпоративную сеть через уязвимые устройства.
Безопасность конечных точек как деятельность представляет собой комплекс мер, направленных на защиту компьютеров, мобильных устройств и других устройств, имеющих доступ к корпоративной сети или другим информационным системам, от разнообразных киберугроз. Эта деятельность включает в себя внедрение и поддержку программных и технических решений, обеспечивающих обнаружение, предотвращение и устранение угроз, которые могут использовать уязвимости устройств для проникновения в систему и компрометации данных. Особое внимание уделяется защите от вирусов, вредоносного программного обеспечения, фишинговых и других атак, способных нанести значительный ущерб информационной безопасности организации.
Ключевые аспекты данного процесса:
В условиях постоянного роста числа киберугроз и усложнения методов атак значимость цифровых (программных) решений для обеспечения безопасности конечных точек неуклонно возрастает. Эффективные программные продукты позволяют создать многоуровневую систему защиты, минимизировать риски проникновения вредоносного ПО и обеспечить сохранность критически важных данных организации.
Системы безопасности конечных точек предназначены для обеспечения комплексной защиты компьютеров, мобильных устройств и других конечных точек доступа к сети от разнообразных киберугроз. Они реализуют многоуровневый подход к безопасности, включающий обнаружение и предотвращение проникновения вредоносного программного обеспечения, блокирование фишинговых атак, а также защиту от других угроз, которые могут использовать уязвимости устройств для проникновения в корпоративную информационную систему.
Функциональное предназначение систем безопасности конечных точек заключается в минимизации рисков компрометации данных и нарушения работы корпоративных информационных систем. Они позволяют обеспечить непрерывный мониторинг состояния устройств, своевременно выявлять и нейтрализовать потенциальные угрозы, а также способствуют поддержанию целостности и конфиденциальности информации, циркулирующей в корпоративной сети.
Системы безопасности конечных точек в основном используют следующие группы пользователей:
При выборе программного продукта из функционального класса систем безопасности конечных точек (СБК) необходимо учитывать ряд ключевых факторов, которые определяются спецификой деятельности компании, её масштабом, отраслевыми требованиями и техническими возможностями. Важно оценить, насколько продукт способен обеспечить комплексную защиту информационных ресурсов, учесть требования к интеграции с существующей ИТ-инфраструктурой, уровень поддержки и обновления со стороны разработчика, а также соответствие нормативным и регуляторным требованиям, характерным для конкретной отрасли.
— масштаб деятельности компании (малый бизнес, средний и крупный бизнес, транснациональные корпорации); — отраслевая специфика и соответствующие требования к защите данных (финансовый сектор, здравоохранение, образование, промышленность и т. д.); — наличие требований к соответствию стандартам и нормативам (например, требованиям по защите персональных данных, отраслевым стандартам информационной безопасности); — технические ограничения существующей ИТ-инфраструктуры (поддерживаемые операционные системы, аппаратные платформы, ограничения по ресурсам — процессор, оперативная память, место на диске); — необходимость интеграции с другими корпоративными системами (например, с системами управления доступом, сетевыми экранами, системами мониторинга и управления инцидентами безопасности); — требования к функциональности (обнаружение и устранение вирусов и вредоносного ПО, защита от фишинговых атак, мониторинг подозрительной активности, шифрование данных, управление обновлениями программного обеспечения и т. д.); — возможности масштабирования системы в соответствии с ростом компании и увеличением объёма данных и числа устройств; — уровень технической поддержки и частота выпуска обновлений от разработчика; — стоимость владения системой, включая лицензии, обслуживание и возможные дополнительные расходы.
Окончательный выбор программного продукта должен базироваться на детальном анализе текущих и будущих потребностей компании в области информационной безопасности, оценке рисков и потенциальных угроз, а также на способности продукта адаптироваться к изменяющимся условиям и требованиям бизнеса. Необходимо провести сравнительный анализ нескольких решений, учитывая не только их функциональные возможности, но и репутацию разработчика, отзывы пользователей, а также наличие квалифицированных специалистов для внедрения и поддержки системы.
Системы безопасности конечных точек (СБК) играют ключевую роль в обеспечении кибербезопасности организаций. Они позволяют минимизировать риски проникновения угроз в корпоративную сеть и защищают информационные активы. Преимущества использования СБК включают:
Многоуровневая защита. СБК создают несколько уровней защиты, что затрудняет проникновение вредоносного ПО и снижает вероятность успешного осуществления кибератак.
Предотвращение распространения угроз. Системы оперативно обнаруживают и изолируют заражённые устройства, предотвращая распространение вредоносного ПО по сети.
Защита конфиденциальных данных. СБК помогают предотвратить утечку конфиденциальной информации, защищая данные на конечных точках доступа.
Снижение рисков финансовых потерь. Минимизация вероятности кибератак и утечек данных снижает финансовые потери, связанные с восстановлением IT-инфраструктуры и компенсацией ущерба.
Соответствие нормативным требованиям. Использование СБК помогает организациям соблюдать требования законодательства и отраслевых стандартов в области информационной безопасности.
Повышение доверия со стороны клиентов и партнёров. Эффективная система безопасности укрепляет репутацию компании и повышает доверие со стороны бизнес-партнёров и клиентов.
Оптимизация работы IT-отдела. Автоматизация процессов обнаружения и устранения угроз снижает нагрузку на IT-специалистов и позволяет им сосредоточиться на стратегических задачах.
В 2025 году на рынке систем безопасности конечных точек (СБК) можно ожидать усиления тенденций к интеграции продвинутых механизмов машинного обучения и искусственного интеллекта для обнаружения и предотвращения угроз, роста популярности решений с нулевым доверием (Zero Trust), развития технологий защиты контейнеров и облачных сред, а также повышенного внимания к защите IoT-устройств и реализации принципов DevSecOps.
Развитие ИИ-алгоритмов в СБК. Внедрение более сложных моделей машинного обучения для анализа поведенческих паттернов и выявления аномалий, что позволит оперативно обнаруживать и нейтрализовать ранее неизвестные угрозы (zero-day exploits).
Расширение применения Zero Trust. Переход к модели безопасности с нулевым доверием, предполагающей верификацию каждого запроса и устройства, независимо от их местоположения в сети, что повысит общий уровень защищённости корпоративных ресурсов.
Защита контейнерных и облачных сред. Разработка специализированных решений для обеспечения безопасности контейнеров и приложений, развёртываемых в облачной инфраструктуре, с учётом их динамичности и распределённости.
Усиление защиты IoT. Создание интегрированных решений для защиты широкого спектра интернет-вещей (IoT) от киберугроз, учитывая растущее количество подключённых устройств и их уязвимость.
Интеграция DevSecOps. Внедрение принципов непрерывной интеграции безопасности в процессы разработки и эксплуатации ПО, что позволит минимизировать уязвимости на ранних этапах жизненного цикла приложений.
Развитие технологий шифрования. Совершенствование алгоритмов и протоколов шифрования для защиты данных на конечных точках и при их передаче, с учётом растущих требований к конфиденциальности и соответствия нормативным актам.
Автоматизация реагирования на инциденты. Разработка систем, способных автоматически анализировать инциденты безопасности и предпринимать необходимые действия для их нейтрализации, минимизируя время реакции и снижая нагрузку на ИТ-персонал.