Логотип Soware
Логотип Soware

Операционные системы устройств интернета вещей (ОСИВ) c функцией Анализ данных датчиков

Операционные системы устройств интернета вещей (ОСИВ, англ. Internet of Things Operating Systems, IoT OS) позволяют оснащать умные устройства, подключенные к интернету или иной сети связи, основными функциями компьютера с учётом ограниченности вычислительных ресурсов и специфических технических особенностей экосистемы интернета вещей. Такие ОС близки к ранее существовавшему классу операционных систем реального времени (ОСРВ, англ. RTOS)

Для того, чтобы быть представленными на рынке, Операционные системы устройств интернета вещей должны иметь следующие функциональные возможности:

  • поддержка работы с ограниченным объёмом вычислительных ресурсов и памяти, что позволяет эффективно функционировать на маломощных устройствах, ;
  • обеспечение взаимодействия с различными типами датчиков и исполнительных устройств, используемых в экосистеме интернета вещей, ;
  • реализация механизмов для работы в распределённой сети с возможностью обмена данными между устройствами, ;
  • поддержка протоколов связи, специфичных для интернета вещей, обеспечивающих надёжную и энергоэффективную передачу данных, ;
  • возможность выполнения базовых вычислительных операций и обработки данных непосредственно на устройстве, минимизируя необходимость обращения к внешним серверам.

Сравнение Операционные системы устройств интернета вещей (ОСИВ)

Выбрать по критериям:

Подходит для
Функции
Особенности
Тарификация
Развёртывание
Графический интерфейс
Поддержка языков
Сортировать:
Систем: 0

Руководство по покупке Операционные системы устройств интернета вещей

1. Что такое Операционные системы устройств интернета вещей

Операционные системы устройств интернета вещей (ОСИВ, англ. Internet of Things Operating Systems, IoT OS) позволяют оснащать умные устройства, подключенные к интернету или иной сети связи, основными функциями компьютера с учётом ограниченности вычислительных ресурсов и специфических технических особенностей экосистемы интернета вещей. Такие ОС близки к ранее существовавшему классу операционных систем реального времени (ОСРВ, англ. RTOS)

2. Зачем бизнесу Операционные системы устройств интернета вещей

Оперативное управление устройством интернета вещей (IoT) представляет собой комплекс мероприятий и технологических процессов, направленных на мониторинг, контроль и регулирование работы подключённого к сети устройства с целью обеспечения его корректного функционирования в рамках заданной задачи и взаимодействия с другими элементами экосистемы. Это включает в себя сбор и анализ данных с датчиков и исполнительных механизмов, управление параметрами работы устройства, обеспечение безопасности и защиты данных, а также обновление программного обеспечения и конфигурационных настроек. Важность оперативного управления обусловлена необходимостью поддерживать высокую надёжность и эффективность работы устройств в динамически изменяющихся условиях эксплуатации.

Ключевые аспекты данного процесса:

  • мониторинг состояния устройства и его компонентов,
  • контроль выполнения заданных алгоритмов и сценариев работы,
  • управление энергопотреблением и другими ресурсами устройства,
  • обеспечение взаимодействия с централизованными системами управления и другими устройствами в сети,
  • диагностика неисправностей и предотвращение сбоев в работе,
  • обновление программного обеспечения и настроек,
  • защита от несанкционированного доступа и киберугроз.

Эффективность оперативного управления устройствами интернета вещей во многом зависит от качества используемых программных решений, которые должны учитывать специфику работы в условиях ограниченных вычислительных ресурсов, обеспечивать совместимость с различными протоколами связи и предоставлять инструменты для удалённого мониторинга и управления. Программные решения играют ключевую роль в реализации интеллектуальных функций устройств и обеспечении их интеграции в общую инфраструктуру интернета вещей.

3. Назначение и цели использования Операционные системы устройств интернета вещей

Операционные системы устройств интернета вещей предназначены для обеспечения функционирования умных устройств, подключённых к интернету или другим сетям связи, путём предоставления им базовых вычислительных возможностей, аналогичных функциям компьютера, с учётом ограничений, связанных с вычислительными ресурсами и особенностями экосистемы интернета вещей. Они позволяют реализовывать взаимодействие устройств с сетью, управлять аппаратными компонентами, обеспечивать выполнение прикладных задач и обрабатывать данные, при этом оптимизируя использование доступных ресурсов и учитывая требования к энергоэффективности, надёжности и безопасности.

Функциональное предназначение ОСИВ заключается также в интеграции разнородных устройств в единую информационную среду, обеспечении совместимости и взаимодействия между ними, реализации механизмов управления и мониторинга устройств в рамках экосистемы интернета вещей. ОСИВ адаптированы для работы в условиях ограниченных вычислительных возможностей и специфических требований к времени отклика, что делает их близкими к операционным системам реального времени и позволяет эффективно решать задачи, связанные с обработкой данных в режиме реального времени, управлением устройствами и реализацией различных сценариев автоматизации.

4. Основные пользователи Операционные системы устройств интернета вещей

Операционные системы устройств интернета вещей в основном используют следующие группы пользователей:

  • производители умных бытовых устройств (например, смарт-телевизоров, холодильников, систем «умный дом»), которые нуждаются в специализированных ОС для интеграции функционала и обеспечения взаимодействия устройств;
  • компании, разрабатывающие и внедряющие промышленные IoT-решения, например, для мониторинга оборудования, управления производственными процессами и обеспечения работы систем автоматизации;
  • организации в сфере здравоохранения, использующие IoT для мониторинга состояния пациентов, работы медицинских датчиков и других устройств, требующих надёжной и безопасной операционной системы;
  • предприятия транспортной отрасли и логистические компании, которые применяют IoT-технологии для отслеживания перемещения грузов, управления транспортными средствами и оптимизации логистических процессов;
  • разработчики и поставщики решений для «умных» городов, использующие ОСИВ для управления уличным освещением, системами ЖКХ, парковочными местами и другими городскими инфраструктурами.

5. Обзор основных функций и возможностей Операционные системы устройств интернета вещей

Агентское приложение устройства (Edge)
Функции Агентских приложений для устройств (англ. Edge Applications) в Платформах интернета вещей (IoT) позволяют устанавливать на устройства управляющие прикладные приложения (при операционной совместимости с устройством). Такие функции предоставляют возможность быстрой настройки и интеграции между сторонним устройством и IoT-платформой.
Администрирование
Возможность администрирования позволяет осуществлять настройку и управление функциональностью системы, а также управление учётными записями и правами доступа к системе.
Анализ данных датчиков
Функции Анализа данных датчиков позволяют при помощи имеющихся в платформе типовых модулей, алгоритмов и обработчиков производить аналитические операции над данными датчиков, в том числе статистический и математический анализ прикладных данных. Такие функции предоставляют возможность получения выводов из данных сенсоров и датчиков непосредственно в Платформе интернета вещей (IoT).
Визуализация данных датчиков
Функции Визуализации данных датчиков в Платформах интернета вещей (IoT) позволяют представлять полученные от IoT-устройств данные в графическом виде, удобном для контроля и анализа. Такие функции предоставляют возможность обращаться к графикам и диаграммам в составе отчётов или информационных панелей (дашбордов, виджетов).
Встроенная среда разработки (IDE)
Функции Встроенной среды разработки (IDE) в Платформах интернета вещей (IoT) позволяют использовать IoT-платформу для быстрой разработки прикладных приложений, программных продуктов, систем и сервисов интернета вещей на базе готовых компонентов платформы, а также с возможностью применения методов малокодовой (Low-Code) или бескодовой (No-Code) разработки.
Геопозиционирование
Функции Геопозиционирования в Платформах интернета вещей (IoT) позволяют отслеживать местоположение умного устройства при помощи спутниковой системы позиционирования или методов ангуляции в сетях подвижной (мобильной) связи. Такие функции предоставляют возможность иметь в системе актуальные данные о географических координатах ИВ-устройства.
Диспетчеризация парка активов
Функции Диспетчеризации парка активов в Платформах интернета вещей (IoT) позволяют массово управлять на прикладном уровне умными устройствами и умными активами (например, вендинговыми аппаратами, электросамокатами, оборудованием умного дома, оборудованием производственной площадки и прочими). Такие функции предоставляют возможность учёта, контроля и сопровождения парка устройств или целого цифровизированного промышленного объекта.
Импорт/экспорт данных
Возможность импорта и/или экспорта данных в продукте позволяет загрузить данные из наиболее популярных файловых форматов или выгрузить рабочие данные в файл для дальнейшего использования в другом ПО.
Искусственный интеллект (AI)
Функции Искусственного интеллекта (AI) в Платформах интернета вещей (IoT) позволяют применять алгоритмы машинного обучения, искусственных нейронных сетей и других методов ИИ над данными с умных устройств и датчиков. Такие функции предоставляют возможность получить пользу от технологий ИИ в приложениях Интернета вещей.
Межмашинное взаимодействие (M2M)
Функции Межмашинного взаимодействия (M2M, MTC) в Платформах интернета вещей (IoT) позволяют обеспечить автоматическое взаимодействие (без участия человека) между прикладными устройствами по стандартизированным прикладным протоколам машинной коммуникации. Таким образом обеспечиваются совместимость устройств и возможности сценарного обмена данными между умными устройствами.
Многопользовательский доступ
Возможность многопользовательской доступа в программную систему обеспечивает одновременную работу нескольких пользователей на одной базе данных под собственными учётными записями. Пользователи в этом случае могут иметь отличающиеся права доступа к данным и функциям программного обеспечения.
Наличие API
Часто при использовании современного делового программного обеспечения возникает потребность автоматической передачи данных из одного ПО в другое. Например, может быть полезно автоматически передавать данные из Системы управления взаимоотношениями с клиентами (CRM) в Систему бухгалтерского учёта (БУ). Для обеспечения такого и подобных сопряжений программные системы оснащаются специальными Прикладными программными интерфейсами (англ. API, Application Programming Interface). С помощью таких API любые компетентные программисты смогут связать два программных продукта между собой для автоматического обмена информацией.
Отчётность и аналитика
Наличие у продукта функций подготовки отчётности и/или аналитики позволяют получать систематизированные и визуализированные данные из системы для последующего анализа и принятия решений на основе данных.
Прикладное управление активами
Функции Прикладного управления активами в Платформах интернета вещей (IoT) позволяют контролировать прикладные показатели состояния умного устройства и управлять его прикладными возможностями. Например, для умных транспортных средств такие функции будут предоставлять возможность состояния частей транспортного средства, данные о пробеге и местоположении и т.п.
Программный интерфейс приложения (API)
Функции Программного интерфейса приложения (API) в Платформах интернета вещей (IoT) позволяют использовать программные интерфейсы для быстрого построения новых приложений интернета вещей. Такие функции предоставляют возможность использовать ИВ-платформу для быстрой интеграции с окружающими информационными системами.
Телеметрия и телеуправление
Функции Телеметрии и телеуправления в Платформах интернета вещей (IoT) позволяют получать данные непосредственно с умных устройств, датчиков и сенсоров, преобразовывать эти данные из цифрового (бинарного) вида к нужному формату прикладных данных и сохранять на сервере, а также отправлять управляющие сигналы умным устройствам, приводам и актуаторам. Такие функции предоставляют возможность работать с умным оборудованием на прикладном уровне по стандартным прикладным протоколам, или по настраиваемым протоколам.
Управление мобильным устройством
Функции Управления мобильным устройством в Платформах интернета вещей (IoT) позволяют выполнять аппаратное управление ресурсами мобильного устройства по стандартам управления мобильными устройствам (англ. Mobile Device Management).
Управление подключениями
Функции Управления подключениями в Платформах интернета вещей (IoT) позволяют вести учёт, контролировать параметры и анализировать статистические параметры сетевых подключений умных устройств для одного или нескольких видов связи. Такие функции предоставляют возможность сохранять контроль над объёмом используемого трафика, частотой сеансов связи и прочими параметрами сетевых подключений ИВ-устройств.
Управление устройством
Функции Управления устройством в Платформах интернета вещей (IoT) позволяют контролировать техническое состояние устройства, производить управление конфигурацией и состоянием устройства и его составных частей (включая блоки ввода/вывода, прикладные периферийные устройства, вычислительные компоненты, включая блоки памяти, процессорные модули, сетевые модули и прочие). Такие функции предоставляют возможность осуществлять полноценное техническое управление умным IoT-устройством.
LoRa связь
Поддержка LoRa (англ. Long Range) связи в Платформах интернета вещей (IoT) позволяет применять данную технологию передачи данных в нелицензируемом диапазоне частот. Стандарт передачи LoRa часто используется для передачи данных в автономных датчиках наблюдения и для решения задач жилищно-коммунального хозяйства.
LPWAN связь
Поддержка LPWAN (англ. Low-power Wide-area Network) связи в Платформах интернета вещей позволяет строить прикладные IoT-приложения с применением беспроводных сетей передачи данных на дальние расстояния. Группа стандартов связи LPWAN включает технологии, спеициально разработанные для распределённых сетей телеметрии, межмашинного взаимодействия и интернета вещей.
NB-Fi связь
Поддержка NB-Fi (англ. Narrow Band Fidelity) связи позволяет использовать данный открытый LPWAN-протокол беспроводной передачи данных малого объёма в рамках Платформы интернета вещей (IoT).
NB-IoT (5G) связь
Поддержка NB-IoT (англ. Narrow Band Internet of Things) связи в Платформах интернета вещей (IoT) позволяет применять стандарты GSM-связи 5 поколения (5G) при построении приложений интернета вещей.
ZigBee связь
Поддержка ZigBee связи в Платформах интернета вещей позволяет применять спецификацию сетевых протоколов верхнего уровня ZigBee для организации связи с умными устройствами в прикладных IoT-приложениях.
Архитектура блокчейн
Использование Архитектуры блокчейн в Платформах интернета вещей позволяет применять в IoT-приложениях цепочки блоков транзации и применять иные архитектурные принципы блокчейн для взаимодействия с умными устройствами. Таким образом возможно применять в приложениях интернета вещей прозрачные, но нераскрытые или псевдо-анонимные операции.
Обеспечение безопасности
Обеспечение безопасности в Платформах интернета вещей (IoT) предполагает использование специальных выделенных модулей защиты информации, соответствующих тем или иным стандартам информационной безопасности.
Проводная связь
Поддержка Проводной связи в Платформах интернета вещей (IoT) позволяет строить приложения для управления умными устройствами, соединяемыми с сервером посредством проводной (стационарной) связи.
Сотовая связь (GSM: 2G, 3G, 4G)
Поддержка Сотовой связи (GSM: 2G, 3G, 4G) в Платформах интернета вещей (IoT) позволяет применять стандартные подключения к сетям сотовой связи на базе стандартов GSM разных поколений. В случае применения такого вида связи, умное устройство взаимодействует с сервером посредством стандартных сетей сотовой связи.
Спутниковая связь
Поддержка Спутниковой связи в Платформах интернета вещей позволяет строить IoT-приложения, где устройства взаимодействуют с сервером посредством спутниковых сетей передачи данных. Спутниковые сети связи обладают наилучшими показателями покрытия сигналом связи, что позволяет строить ИВ-приложения для умных мобильных активов, выходящих далеко за границы покрытия антен связи малого и среднего радиуса действия.

6. Рекомендации по выбору Операционные системы устройств интернета вещей

При выборе программного продукта из функционального класса операционных систем устройств интернета вещей (ОСИВ) необходимо учитывать ряд ключевых факторов, которые определят пригодность системы для решения конкретных бизнес-задач. Прежде всего, следует оценить масштаб деятельности компании и предполагаемый объём подключённых устройств, так как это повлияет на требования к масштабируемости и управлению ресурсами ОСИВ. Также важно проанализировать отраслевые требования и стандарты, например, в сфере здравоохранения могут быть жёсткие требования к безопасности данных и соответствию медицинским нормативам, а в промышленном интернете вещей — повышенные требования к надёжности и времени отклика системы. Технические ограничения устройств, такие как ограниченный объём оперативной памяти, процессорные мощности и энергопотребление, также играют значительную роль в выборе ОСИВ. Кроме того, необходимо учитывать совместимость с существующими корпоративными информационными системами и протоколами связи, а также возможности для разработки и интеграции прикладных модулей и API для расширения функциональности.

Ключевые аспекты при принятии решения:

  • совместимость с аппаратными платформами, которые планируется использовать (например, поддержка определённых микроконтроллеров или одноплатных компьютеров);
  • наличие механизмов обеспечения безопасности данных (шифрование трафика, аутентификация устройств, защита от несанкционированного доступа);
  • поддержка необходимых сетевых протоколов и стандартов (например, MQTT, CoAP, HTTP для обмена данными);
  • возможности для удалённого управления и мониторинга устройств, включая наличие веб-интерфейсов или специализированных инструментов администрирования;
  • поддержка обновлений и механизмов обеспечения жизненного цикла ПО (например, возможность «бесшовного» обновления без потери данных и прерывания работы устройств);
  • наличие документации, инструментов разработки и сообществ разработчиков для упрощения создания прикладных решений;
  • соответствие отраслевым стандартам и нормативам (например, требованиям к защите персональных данных, промышленным стандартам безопасности).

Окончательный выбор ОСИВ должен базироваться на тщательном анализе соотношения между функциональными возможностями системы и спецификой бизнес-процессов компании. Важно также предусмотреть потенциал для дальнейшего развития и интеграции с новыми технологиями, учитывая динамичный характер рынка интернета вещей и быстрое обновление технического ландшафта.

7. Выгоды, преимущества и польза от применения Операционные системы устройств интернета вещей

Операционные системы устройств интернета вещей (ОСИВ) играют ключевую роль в развитии экосистемы IoT, обеспечивая эффективное функционирование умных устройств. Их применение приносит ряд преимуществ, связанных с оптимизацией ресурсов, повышением эффективности и расширением возможностей взаимодействия устройств.

  • Оптимизация использования ресурсов. ОСИВ позволяют эффективно использовать ограниченные вычислительные ресурсы устройств IoT, минимизируя потребление энергии и памяти, что особенно важно для маломощных и компактных устройств.

  • Повышение надёжности и стабильности работы. Благодаря специализированной архитектуре и механизмам управления ресурсами ОСИВ обеспечивают стабильную работу устройств в различных условиях, снижая вероятность сбоев и аварий.

  • Упрощение разработки и внедрения IoT-решений. ОСИВ предоставляют разработчикам готовые инструменты и API для создания приложений, что ускоряет процесс разработки, снижает затраты на проектирование и внедрение новых устройств и сервисов.

  • Обеспечение совместимости и интероперабельности. ОСИВ способствуют взаимодействию различных устройств и сервисов в рамках единой экосистемы, обеспечивая стандартизацию интерфейсов и протоколов обмена данными.

  • Улучшение безопасности системы. ОСИВ включают механизмы защиты данных и управления доступом, что повышает общий уровень безопасности устройств и предотвращает несанкционированный доступ к чувствительным данным.

  • Расширение функциональности устройств. С помощью ОСИВ устройства IoT получают дополнительные возможности для обработки данных, выполнения сложных алгоритмов и взаимодействия с облачными сервисами, что расширяет их прикладные возможности.

  • Снижение общих затрат на эксплуатацию. Оптимизация ресурсов и повышение эффективности работы устройств благодаря ОСИВ приводит к снижению энергопотребления, уменьшению необходимости в техническом обслуживании и, как следствие, к сокращению эксплуатационных расходов.

8. Отличительные черты Операционные системы устройств интернета вещей

Для того, чтобы быть представленными на рынке, Операционные системы устройств интернета вещей должны иметь следующие функциональные возможности:

  • поддержка работы с ограниченным объёмом вычислительных ресурсов и памяти, что позволяет эффективно функционировать на маломощных устройствах, ;
  • обеспечение взаимодействия с различными типами датчиков и исполнительных устройств, используемых в экосистеме интернета вещей, ;
  • реализация механизмов для работы в распределённой сети с возможностью обмена данными между устройствами, ;
  • поддержка протоколов связи, специфичных для интернета вещей, обеспечивающих надёжную и энергоэффективную передачу данных, ;
  • возможность выполнения базовых вычислительных операций и обработки данных непосредственно на устройстве, минимизируя необходимость обращения к внешним серверам.

9. Тенденции в области Операционные системы устройств интернета вещей

В 2025 году на рынке операционных систем устройств интернета вещей (ОСИВ) можно ожидать усиления тенденций, связанных с повышением энергоэффективности, улучшением безопасности данных, интеграцией с искусственным интеллектом и машинным обучением, а также развитием мультиплатформенности и совместимости с различными устройствами и протоколами связи. Среди ключевых трендов:

  • Повышение энергоэффективности. ОСИВ будут оптимизировать энергопотребление устройств, что особенно важно для устройств с автономным питанием, например, сенсоров и носимых гаджетов.

  • Усиление мер кибербезопасности. В условиях роста числа подключённых устройств и объёма передаваемых данных разработчики ОСИВ будут уделять больше внимания шифрованию, аутентификации и защите от несанкционированного доступа.

  • Интеграция с ИИ и машинным обучением. ОСИВ получат встроенные механизмы для работы с алгоритмами машинного обучения, что позволит устройствам анализировать данные и принимать решения в реальном времени.

  • Развитие мультиплатформенности. ОСИВ будут обеспечивать совместимость с широким спектром аппаратных платформ и программных интерфейсов, что упростит разработку и развёртывание приложений для интернета вещей.

  • Поддержка периферийных вычислений. ОСИВ станут основой для реализации периферийных вычислений, позволяя обрабатывать данные ближе к источнику их генерации и снижая нагрузку на центральные серверы.

  • Упрощение разработки приложений. Появится больше инструментов и фреймворков для разработки приложений на базе ОСИВ, что сделает процесс создания решений для интернета вещей более доступным для разработчиков.

  • Расширение поддержки протоколов связи. ОСИВ будут поддерживать новые и существующие протоколы связи, обеспечивая взаимодействие устройств в разнородных сетях интернета вещей.

10. В каких странах разрабатываются Операционные системы устройств интернета вещей

Компании-разработчики, создающие internet-of-things-operating-systems, работают в различных странах. Ниже перечислены программные продукты данного класса по странам происхождения

Сравнение Операционные системы устройств интернета вещей (ОСИВ)

Систем: 0

Руководство по покупке Операционные системы устройств интернета вещей

Что такое Операционные системы устройств интернета вещей

Операционные системы устройств интернета вещей (ОСИВ, англ. Internet of Things Operating Systems, IoT OS) позволяют оснащать умные устройства, подключенные к интернету или иной сети связи, основными функциями компьютера с учётом ограниченности вычислительных ресурсов и специфических технических особенностей экосистемы интернета вещей. Такие ОС близки к ранее существовавшему классу операционных систем реального времени (ОСРВ, англ. RTOS)

Зачем бизнесу Операционные системы устройств интернета вещей

Оперативное управление устройством интернета вещей (IoT) представляет собой комплекс мероприятий и технологических процессов, направленных на мониторинг, контроль и регулирование работы подключённого к сети устройства с целью обеспечения его корректного функционирования в рамках заданной задачи и взаимодействия с другими элементами экосистемы. Это включает в себя сбор и анализ данных с датчиков и исполнительных механизмов, управление параметрами работы устройства, обеспечение безопасности и защиты данных, а также обновление программного обеспечения и конфигурационных настроек. Важность оперативного управления обусловлена необходимостью поддерживать высокую надёжность и эффективность работы устройств в динамически изменяющихся условиях эксплуатации.

Ключевые аспекты данного процесса:

  • мониторинг состояния устройства и его компонентов,
  • контроль выполнения заданных алгоритмов и сценариев работы,
  • управление энергопотреблением и другими ресурсами устройства,
  • обеспечение взаимодействия с централизованными системами управления и другими устройствами в сети,
  • диагностика неисправностей и предотвращение сбоев в работе,
  • обновление программного обеспечения и настроек,
  • защита от несанкционированного доступа и киберугроз.

Эффективность оперативного управления устройствами интернета вещей во многом зависит от качества используемых программных решений, которые должны учитывать специфику работы в условиях ограниченных вычислительных ресурсов, обеспечивать совместимость с различными протоколами связи и предоставлять инструменты для удалённого мониторинга и управления. Программные решения играют ключевую роль в реализации интеллектуальных функций устройств и обеспечении их интеграции в общую инфраструктуру интернета вещей.

Назначение и цели использования Операционные системы устройств интернета вещей

Операционные системы устройств интернета вещей предназначены для обеспечения функционирования умных устройств, подключённых к интернету или другим сетям связи, путём предоставления им базовых вычислительных возможностей, аналогичных функциям компьютера, с учётом ограничений, связанных с вычислительными ресурсами и особенностями экосистемы интернета вещей. Они позволяют реализовывать взаимодействие устройств с сетью, управлять аппаратными компонентами, обеспечивать выполнение прикладных задач и обрабатывать данные, при этом оптимизируя использование доступных ресурсов и учитывая требования к энергоэффективности, надёжности и безопасности.

Функциональное предназначение ОСИВ заключается также в интеграции разнородных устройств в единую информационную среду, обеспечении совместимости и взаимодействия между ними, реализации механизмов управления и мониторинга устройств в рамках экосистемы интернета вещей. ОСИВ адаптированы для работы в условиях ограниченных вычислительных возможностей и специфических требований к времени отклика, что делает их близкими к операционным системам реального времени и позволяет эффективно решать задачи, связанные с обработкой данных в режиме реального времени, управлением устройствами и реализацией различных сценариев автоматизации.

Основные пользователи Операционные системы устройств интернета вещей

Операционные системы устройств интернета вещей в основном используют следующие группы пользователей:

  • производители умных бытовых устройств (например, смарт-телевизоров, холодильников, систем «умный дом»), которые нуждаются в специализированных ОС для интеграции функционала и обеспечения взаимодействия устройств;
  • компании, разрабатывающие и внедряющие промышленные IoT-решения, например, для мониторинга оборудования, управления производственными процессами и обеспечения работы систем автоматизации;
  • организации в сфере здравоохранения, использующие IoT для мониторинга состояния пациентов, работы медицинских датчиков и других устройств, требующих надёжной и безопасной операционной системы;
  • предприятия транспортной отрасли и логистические компании, которые применяют IoT-технологии для отслеживания перемещения грузов, управления транспортными средствами и оптимизации логистических процессов;
  • разработчики и поставщики решений для «умных» городов, использующие ОСИВ для управления уличным освещением, системами ЖКХ, парковочными местами и другими городскими инфраструктурами.
Обзор основных функций и возможностей Операционные системы устройств интернета вещей
Агентское приложение устройства (Edge)
Функции Агентских приложений для устройств (англ. Edge Applications) в Платформах интернета вещей (IoT) позволяют устанавливать на устройства управляющие прикладные приложения (при операционной совместимости с устройством). Такие функции предоставляют возможность быстрой настройки и интеграции между сторонним устройством и IoT-платформой.
Администрирование
Возможность администрирования позволяет осуществлять настройку и управление функциональностью системы, а также управление учётными записями и правами доступа к системе.
Анализ данных датчиков
Функции Анализа данных датчиков позволяют при помощи имеющихся в платформе типовых модулей, алгоритмов и обработчиков производить аналитические операции над данными датчиков, в том числе статистический и математический анализ прикладных данных. Такие функции предоставляют возможность получения выводов из данных сенсоров и датчиков непосредственно в Платформе интернета вещей (IoT).
Визуализация данных датчиков
Функции Визуализации данных датчиков в Платформах интернета вещей (IoT) позволяют представлять полученные от IoT-устройств данные в графическом виде, удобном для контроля и анализа. Такие функции предоставляют возможность обращаться к графикам и диаграммам в составе отчётов или информационных панелей (дашбордов, виджетов).
Встроенная среда разработки (IDE)
Функции Встроенной среды разработки (IDE) в Платформах интернета вещей (IoT) позволяют использовать IoT-платформу для быстрой разработки прикладных приложений, программных продуктов, систем и сервисов интернета вещей на базе готовых компонентов платформы, а также с возможностью применения методов малокодовой (Low-Code) или бескодовой (No-Code) разработки.
Геопозиционирование
Функции Геопозиционирования в Платформах интернета вещей (IoT) позволяют отслеживать местоположение умного устройства при помощи спутниковой системы позиционирования или методов ангуляции в сетях подвижной (мобильной) связи. Такие функции предоставляют возможность иметь в системе актуальные данные о географических координатах ИВ-устройства.
Диспетчеризация парка активов
Функции Диспетчеризации парка активов в Платформах интернета вещей (IoT) позволяют массово управлять на прикладном уровне умными устройствами и умными активами (например, вендинговыми аппаратами, электросамокатами, оборудованием умного дома, оборудованием производственной площадки и прочими). Такие функции предоставляют возможность учёта, контроля и сопровождения парка устройств или целого цифровизированного промышленного объекта.
Импорт/экспорт данных
Возможность импорта и/или экспорта данных в продукте позволяет загрузить данные из наиболее популярных файловых форматов или выгрузить рабочие данные в файл для дальнейшего использования в другом ПО.
Искусственный интеллект (AI)
Функции Искусственного интеллекта (AI) в Платформах интернета вещей (IoT) позволяют применять алгоритмы машинного обучения, искусственных нейронных сетей и других методов ИИ над данными с умных устройств и датчиков. Такие функции предоставляют возможность получить пользу от технологий ИИ в приложениях Интернета вещей.
Межмашинное взаимодействие (M2M)
Функции Межмашинного взаимодействия (M2M, MTC) в Платформах интернета вещей (IoT) позволяют обеспечить автоматическое взаимодействие (без участия человека) между прикладными устройствами по стандартизированным прикладным протоколам машинной коммуникации. Таким образом обеспечиваются совместимость устройств и возможности сценарного обмена данными между умными устройствами.
Многопользовательский доступ
Возможность многопользовательской доступа в программную систему обеспечивает одновременную работу нескольких пользователей на одной базе данных под собственными учётными записями. Пользователи в этом случае могут иметь отличающиеся права доступа к данным и функциям программного обеспечения.
Наличие API
Часто при использовании современного делового программного обеспечения возникает потребность автоматической передачи данных из одного ПО в другое. Например, может быть полезно автоматически передавать данные из Системы управления взаимоотношениями с клиентами (CRM) в Систему бухгалтерского учёта (БУ). Для обеспечения такого и подобных сопряжений программные системы оснащаются специальными Прикладными программными интерфейсами (англ. API, Application Programming Interface). С помощью таких API любые компетентные программисты смогут связать два программных продукта между собой для автоматического обмена информацией.
Отчётность и аналитика
Наличие у продукта функций подготовки отчётности и/или аналитики позволяют получать систематизированные и визуализированные данные из системы для последующего анализа и принятия решений на основе данных.
Прикладное управление активами
Функции Прикладного управления активами в Платформах интернета вещей (IoT) позволяют контролировать прикладные показатели состояния умного устройства и управлять его прикладными возможностями. Например, для умных транспортных средств такие функции будут предоставлять возможность состояния частей транспортного средства, данные о пробеге и местоположении и т.п.
Программный интерфейс приложения (API)
Функции Программного интерфейса приложения (API) в Платформах интернета вещей (IoT) позволяют использовать программные интерфейсы для быстрого построения новых приложений интернета вещей. Такие функции предоставляют возможность использовать ИВ-платформу для быстрой интеграции с окружающими информационными системами.
Телеметрия и телеуправление
Функции Телеметрии и телеуправления в Платформах интернета вещей (IoT) позволяют получать данные непосредственно с умных устройств, датчиков и сенсоров, преобразовывать эти данные из цифрового (бинарного) вида к нужному формату прикладных данных и сохранять на сервере, а также отправлять управляющие сигналы умным устройствам, приводам и актуаторам. Такие функции предоставляют возможность работать с умным оборудованием на прикладном уровне по стандартным прикладным протоколам, или по настраиваемым протоколам.
Управление мобильным устройством
Функции Управления мобильным устройством в Платформах интернета вещей (IoT) позволяют выполнять аппаратное управление ресурсами мобильного устройства по стандартам управления мобильными устройствам (англ. Mobile Device Management).
Управление подключениями
Функции Управления подключениями в Платформах интернета вещей (IoT) позволяют вести учёт, контролировать параметры и анализировать статистические параметры сетевых подключений умных устройств для одного или нескольких видов связи. Такие функции предоставляют возможность сохранять контроль над объёмом используемого трафика, частотой сеансов связи и прочими параметрами сетевых подключений ИВ-устройств.
Управление устройством
Функции Управления устройством в Платформах интернета вещей (IoT) позволяют контролировать техническое состояние устройства, производить управление конфигурацией и состоянием устройства и его составных частей (включая блоки ввода/вывода, прикладные периферийные устройства, вычислительные компоненты, включая блоки памяти, процессорные модули, сетевые модули и прочие). Такие функции предоставляют возможность осуществлять полноценное техническое управление умным IoT-устройством.
LoRa связь
Поддержка LoRa (англ. Long Range) связи в Платформах интернета вещей (IoT) позволяет применять данную технологию передачи данных в нелицензируемом диапазоне частот. Стандарт передачи LoRa часто используется для передачи данных в автономных датчиках наблюдения и для решения задач жилищно-коммунального хозяйства.
LPWAN связь
Поддержка LPWAN (англ. Low-power Wide-area Network) связи в Платформах интернета вещей позволяет строить прикладные IoT-приложения с применением беспроводных сетей передачи данных на дальние расстояния. Группа стандартов связи LPWAN включает технологии, спеициально разработанные для распределённых сетей телеметрии, межмашинного взаимодействия и интернета вещей.
NB-Fi связь
Поддержка NB-Fi (англ. Narrow Band Fidelity) связи позволяет использовать данный открытый LPWAN-протокол беспроводной передачи данных малого объёма в рамках Платформы интернета вещей (IoT).
NB-IoT (5G) связь
Поддержка NB-IoT (англ. Narrow Band Internet of Things) связи в Платформах интернета вещей (IoT) позволяет применять стандарты GSM-связи 5 поколения (5G) при построении приложений интернета вещей.
ZigBee связь
Поддержка ZigBee связи в Платформах интернета вещей позволяет применять спецификацию сетевых протоколов верхнего уровня ZigBee для организации связи с умными устройствами в прикладных IoT-приложениях.
Архитектура блокчейн
Использование Архитектуры блокчейн в Платформах интернета вещей позволяет применять в IoT-приложениях цепочки блоков транзации и применять иные архитектурные принципы блокчейн для взаимодействия с умными устройствами. Таким образом возможно применять в приложениях интернета вещей прозрачные, но нераскрытые или псевдо-анонимные операции.
Обеспечение безопасности
Обеспечение безопасности в Платформах интернета вещей (IoT) предполагает использование специальных выделенных модулей защиты информации, соответствующих тем или иным стандартам информационной безопасности.
Проводная связь
Поддержка Проводной связи в Платформах интернета вещей (IoT) позволяет строить приложения для управления умными устройствами, соединяемыми с сервером посредством проводной (стационарной) связи.
Сотовая связь (GSM: 2G, 3G, 4G)
Поддержка Сотовой связи (GSM: 2G, 3G, 4G) в Платформах интернета вещей (IoT) позволяет применять стандартные подключения к сетям сотовой связи на базе стандартов GSM разных поколений. В случае применения такого вида связи, умное устройство взаимодействует с сервером посредством стандартных сетей сотовой связи.
Спутниковая связь
Поддержка Спутниковой связи в Платформах интернета вещей позволяет строить IoT-приложения, где устройства взаимодействуют с сервером посредством спутниковых сетей передачи данных. Спутниковые сети связи обладают наилучшими показателями покрытия сигналом связи, что позволяет строить ИВ-приложения для умных мобильных активов, выходящих далеко за границы покрытия антен связи малого и среднего радиуса действия.
Рекомендации по выбору Операционные системы устройств интернета вещей

При выборе программного продукта из функционального класса операционных систем устройств интернета вещей (ОСИВ) необходимо учитывать ряд ключевых факторов, которые определят пригодность системы для решения конкретных бизнес-задач. Прежде всего, следует оценить масштаб деятельности компании и предполагаемый объём подключённых устройств, так как это повлияет на требования к масштабируемости и управлению ресурсами ОСИВ. Также важно проанализировать отраслевые требования и стандарты, например, в сфере здравоохранения могут быть жёсткие требования к безопасности данных и соответствию медицинским нормативам, а в промышленном интернете вещей — повышенные требования к надёжности и времени отклика системы. Технические ограничения устройств, такие как ограниченный объём оперативной памяти, процессорные мощности и энергопотребление, также играют значительную роль в выборе ОСИВ. Кроме того, необходимо учитывать совместимость с существующими корпоративными информационными системами и протоколами связи, а также возможности для разработки и интеграции прикладных модулей и API для расширения функциональности.

Ключевые аспекты при принятии решения:

  • совместимость с аппаратными платформами, которые планируется использовать (например, поддержка определённых микроконтроллеров или одноплатных компьютеров);
  • наличие механизмов обеспечения безопасности данных (шифрование трафика, аутентификация устройств, защита от несанкционированного доступа);
  • поддержка необходимых сетевых протоколов и стандартов (например, MQTT, CoAP, HTTP для обмена данными);
  • возможности для удалённого управления и мониторинга устройств, включая наличие веб-интерфейсов или специализированных инструментов администрирования;
  • поддержка обновлений и механизмов обеспечения жизненного цикла ПО (например, возможность «бесшовного» обновления без потери данных и прерывания работы устройств);
  • наличие документации, инструментов разработки и сообществ разработчиков для упрощения создания прикладных решений;
  • соответствие отраслевым стандартам и нормативам (например, требованиям к защите персональных данных, промышленным стандартам безопасности).

Окончательный выбор ОСИВ должен базироваться на тщательном анализе соотношения между функциональными возможностями системы и спецификой бизнес-процессов компании. Важно также предусмотреть потенциал для дальнейшего развития и интеграции с новыми технологиями, учитывая динамичный характер рынка интернета вещей и быстрое обновление технического ландшафта.

Выгоды, преимущества и польза от применения Операционные системы устройств интернета вещей

Операционные системы устройств интернета вещей (ОСИВ) играют ключевую роль в развитии экосистемы IoT, обеспечивая эффективное функционирование умных устройств. Их применение приносит ряд преимуществ, связанных с оптимизацией ресурсов, повышением эффективности и расширением возможностей взаимодействия устройств.

  • Оптимизация использования ресурсов. ОСИВ позволяют эффективно использовать ограниченные вычислительные ресурсы устройств IoT, минимизируя потребление энергии и памяти, что особенно важно для маломощных и компактных устройств.

  • Повышение надёжности и стабильности работы. Благодаря специализированной архитектуре и механизмам управления ресурсами ОСИВ обеспечивают стабильную работу устройств в различных условиях, снижая вероятность сбоев и аварий.

  • Упрощение разработки и внедрения IoT-решений. ОСИВ предоставляют разработчикам готовые инструменты и API для создания приложений, что ускоряет процесс разработки, снижает затраты на проектирование и внедрение новых устройств и сервисов.

  • Обеспечение совместимости и интероперабельности. ОСИВ способствуют взаимодействию различных устройств и сервисов в рамках единой экосистемы, обеспечивая стандартизацию интерфейсов и протоколов обмена данными.

  • Улучшение безопасности системы. ОСИВ включают механизмы защиты данных и управления доступом, что повышает общий уровень безопасности устройств и предотвращает несанкционированный доступ к чувствительным данным.

  • Расширение функциональности устройств. С помощью ОСИВ устройства IoT получают дополнительные возможности для обработки данных, выполнения сложных алгоритмов и взаимодействия с облачными сервисами, что расширяет их прикладные возможности.

  • Снижение общих затрат на эксплуатацию. Оптимизация ресурсов и повышение эффективности работы устройств благодаря ОСИВ приводит к снижению энергопотребления, уменьшению необходимости в техническом обслуживании и, как следствие, к сокращению эксплуатационных расходов.

Отличительные черты Операционные системы устройств интернета вещей

Для того, чтобы быть представленными на рынке, Операционные системы устройств интернета вещей должны иметь следующие функциональные возможности:

  • поддержка работы с ограниченным объёмом вычислительных ресурсов и памяти, что позволяет эффективно функционировать на маломощных устройствах, ;
  • обеспечение взаимодействия с различными типами датчиков и исполнительных устройств, используемых в экосистеме интернета вещей, ;
  • реализация механизмов для работы в распределённой сети с возможностью обмена данными между устройствами, ;
  • поддержка протоколов связи, специфичных для интернета вещей, обеспечивающих надёжную и энергоэффективную передачу данных, ;
  • возможность выполнения базовых вычислительных операций и обработки данных непосредственно на устройстве, минимизируя необходимость обращения к внешним серверам.
Тенденции в области Операционные системы устройств интернета вещей

В 2025 году на рынке операционных систем устройств интернета вещей (ОСИВ) можно ожидать усиления тенденций, связанных с повышением энергоэффективности, улучшением безопасности данных, интеграцией с искусственным интеллектом и машинным обучением, а также развитием мультиплатформенности и совместимости с различными устройствами и протоколами связи. Среди ключевых трендов:

  • Повышение энергоэффективности. ОСИВ будут оптимизировать энергопотребление устройств, что особенно важно для устройств с автономным питанием, например, сенсоров и носимых гаджетов.

  • Усиление мер кибербезопасности. В условиях роста числа подключённых устройств и объёма передаваемых данных разработчики ОСИВ будут уделять больше внимания шифрованию, аутентификации и защите от несанкционированного доступа.

  • Интеграция с ИИ и машинным обучением. ОСИВ получат встроенные механизмы для работы с алгоритмами машинного обучения, что позволит устройствам анализировать данные и принимать решения в реальном времени.

  • Развитие мультиплатформенности. ОСИВ будут обеспечивать совместимость с широким спектром аппаратных платформ и программных интерфейсов, что упростит разработку и развёртывание приложений для интернета вещей.

  • Поддержка периферийных вычислений. ОСИВ станут основой для реализации периферийных вычислений, позволяя обрабатывать данные ближе к источнику их генерации и снижая нагрузку на центральные серверы.

  • Упрощение разработки приложений. Появится больше инструментов и фреймворков для разработки приложений на базе ОСИВ, что сделает процесс создания решений для интернета вещей более доступным для разработчиков.

  • Расширение поддержки протоколов связи. ОСИВ будут поддерживать новые и существующие протоколы связи, обеспечивая взаимодействие устройств в разнородных сетях интернета вещей.

В каких странах разрабатываются Операционные системы устройств интернета вещей
Компании-разработчики, создающие internet-of-things-operating-systems, работают в различных странах. Ниже перечислены программные продукты данного класса по странам происхождения
Soware логотип
Soware является основным источником сведений о прикладном программном обеспечении для предприятий. Используя наш обширный каталог категорий и программных продуктов, лица, принимающие решения в России и странах СНГ получают бесплатный инструмент для выбора и сравнения систем от разных разработчиков
Соваре, ООО Санкт-Петербург, Россия info@soware.ru
2025 Soware.Ru - Умный выбор систем для бизнеса