Логотип Soware
Логотип Soware

Шведские Платформы управления данными (DMP)

Платформы управления данными (ПУД, англ. Data Management Platforms, DMP) предназначены для объединения, представления, хранения, перемещения, быстрой обработки и управления данными в различных форматах и в рамках различных подходов. В число ПУД входят системы различной специализации, от СУБД, являющихся сегодня стандартным средством управления данными в любой предметной области до Систем управления НСИ, являющихся системами управления прикладными сведениями в компаниях.

Классификатор программных продуктов Соваре определяет конкретные функциональные критерии для систем. Для того, чтобы быть представленными на рынке Платформы управления данными, системы должны иметь следующие функциональные возможности:

  • объединение данных из различных источников и форматов в едином пространстве,
  • обеспечение эффективного хранения данных с учётом их объёма и структуры,
  • реализация механизмов перемещения данных между различными системами и хранилищами,
  • быстрая обработка данных, включая фильтрацию, сортировку и преобразование,
  • управление данными в рамках различных подходов и методологий, в том числе с применением специализированных алгоритмов и правил.

Сравнение Платформы управления данными (DMP)

Выбрать по критериям:

Категории
Подходит для
Функции
Тарификация
Развёртывание
Графический интерфейс
Поддержка языков
Страна происхождения
Сортировать:
Систем: 1
Логотип не предоставлен разработчиком

Apica Lake от Apica

Apica Lake — это платформа для управления данными, обеспечивающая сбор, хранение, анализ телеметрии и наблюдение за данными с применением ИИ и ML для оптимизации рабочих процессов. Узнать больше про Apica Lake

Руководство по покупке Платформы управления данными

1. Что такое Платформы управления данными

Платформы управления данными (ПУД, англ. Data Management Platforms, DMP) предназначены для объединения, представления, хранения, перемещения, быстрой обработки и управления данными в различных форматах и в рамках различных подходов. В число ПУД входят системы различной специализации, от СУБД, являющихся сегодня стандартным средством управления данными в любой предметной области до Систем управления НСИ, являющихся системами управления прикладными сведениями в компаниях.

2. Зачем бизнесу Платформы управления данными

Управление данными как деятельность представляет собой комплекс процессов, направленных на сбор, хранение, обработку, анализ и распространение данных с целью обеспечения их доступности, целостности, актуальности и безопасности для поддержки бизнес-процессов и принятия обоснованных управленческих решений. Эта деятельность включает в себя не только технические аспекты работы с данными, но и организационные, методологические и управленческие компоненты, которые обеспечивают эффективное использование информационных активов компании.

Ключевые аспекты данного процесса:

  • сбор и интеграция данных из различных источников,
  • хранение данных с учётом требований к их доступности и безопасности,
  • обработка и трансформация данных для приведения их к единому формату и обеспечения возможности анализа,
  • обеспечение качества и целостности данных,
  • анализ данных для выявления закономерностей и получения инсайтов,
  • управление жизненным циклом данных, включая их архивацию и удаление,
  • обеспечение защиты данных от несанкционированного доступа и других угроз.

Важную роль в управлении данными играют цифровые (программные) решения, которые автоматизируют и оптимизируют процессы работы с данными. К таким решениям относятся платформы управления данными (ПУД), системы управления базами данных (СУБД), системы управления нормативно-справочной информацией (НСИ) и другие инструменты, позволяющие эффективно реализовывать все этапы управления данными и обеспечивать высокое качество информационной поддержки бизнеса.

3. Назначение и цели использования Платформы управления данными

Платформы управления данными предназначены для объединения и централизованного хранения разнородных данных, обеспечения их целостности, доступности и безопасности, а также для организации эффективного управления данными в рамках различных бизнес-процессов и аналитических задач. Они позволяют осуществлять сбор данных из множества источников, их трансформацию и очистку, обеспечивают механизмы для хранения и перемещения данных между различными системами и платформами, а также предоставляют инструменты для их структурирования и индексации, что необходимо для последующей обработки и анализа.

Кроме того, платформы управления данными обеспечивают возможности для быстрой обработки больших объёмов данных, реализации сложных запросов и аналитических операций, а также для построения систем отчётности и визуализации данных. Они поддерживают различные форматы данных и подходы к их управлению, включая реляционные и нереляционные модели, что позволяет адаптировать систему под специфические требования бизнеса и особенности предметной области. В число таких систем входят как системы управления базами данных (СУБД), являющиеся фундаментальным инструментом для работы с данными, так и системы управления нормативно-справочной информацией (НСИ), которые играют важную роль в управлении прикладными сведениями в организациях.

4. Основные пользователи Платформы управления данными

Платформы управления данными в основном используют следующие группы пользователей:

  • крупные и средние предприятия для централизации и управления большими объёмами данных, оптимизации бизнес-процессов и повышения эффективности принятия решений;
  • компании, работающие с клиентскими данными, для сегментации аудитории, персонализации маркетинговых кампаний и анализа поведения потребителей;
  • организации, занимающиеся аналитикой и Big Data, для обработки и анализа разнородных данных с целью выявления закономерностей и прогнозирования тенденций;
  • IT-компании и интеграторы при создании комплексных информационных систем, требующих гибкого управления данными и их интеграции из различных источников;
  • научные и образовательные учреждения для управления данными исследовательских проектов, учебных материалов и статистической информации.

5. Обзор основных функций и возможностей Платформы управления данными

Администрирование
Возможность администрирования позволяет осуществлять настройку и управление функциональностью системы, а также управление учётными записями и правами доступа к системе.
Импорт/экспорт данных
Возможность импорта и/или экспорта данных в продукте позволяет загрузить данные из наиболее популярных файловых форматов или выгрузить рабочие данные в файл для дальнейшего использования в другом ПО.
Многопользовательский доступ
Возможность многопользовательской доступа в программную систему обеспечивает одновременную работу нескольких пользователей на одной базе данных под собственными учётными записями. Пользователи в этом случае могут иметь отличающиеся права доступа к данным и функциям программного обеспечения.
Наличие API
Часто при использовании современного делового программного обеспечения возникает потребность автоматической передачи данных из одного ПО в другое. Например, может быть полезно автоматически передавать данные из Системы управления взаимоотношениями с клиентами (CRM) в Систему бухгалтерского учёта (БУ). Для обеспечения такого и подобных сопряжений программные системы оснащаются специальными Прикладными программными интерфейсами (англ. API, Application Programming Interface). С помощью таких API любые компетентные программисты смогут связать два программных продукта между собой для автоматического обмена информацией.
Отчётность и аналитика
Наличие у продукта функций подготовки отчётности и/или аналитики позволяют получать систематизированные и визуализированные данные из системы для последующего анализа и принятия решений на основе данных.

6. Рекомендации по выбору Платформы управления данными

На основе своего экспертного мнения Соваре рекомендует наиболее внимательно подходить к выбору решения. При выборе программного продукта из функционального класса Платформы управления данными (ПУД) необходимо учитывать ряд ключевых факторов, которые определят пригодность системы для решения конкретных бизнес-задач. Прежде всего, следует проанализировать масштаб деятельности компании: для малого и среднего бизнеса могут подойти более простые и гибкие решения с базовым набором функций, тогда как крупным корпорациям потребуются масштабируемые системы с высокой производительностью и возможностью интеграции с большим количеством внешних систем. Также важно учитывать отраслевые требования и стандарты — например, в финансовом секторе и здравоохранении действуют строгие правила обработки и хранения данных, требующие соответствия системы определённым нормативам безопасности и конфиденциальности. Технические ограничения, такие как существующая ИТ-инфраструктура, поддерживаемые форматы данных и требования к производительности, также играют значительную роль в выборе ПУД.

Ключевые аспекты при принятии решения:

  • совместимость с текущей ИТ-инфраструктурой (например, поддержка определённых операционных систем и аппаратных платформ);
  • возможности масштабирования (поддержка роста объёма данных и числа пользователей);
  • наличие механизмов обеспечения безопасности данных (шифрование, аутентификация, аудит доступа);
  • поддержка различных форматов данных и источников (структурированные и неструктурированные данные, данные из внешних API и баз данных);
  • функциональность для работы с метаданными и управления качеством данных (очистка, валидация, стандартизация);
  • возможности интеграции с другими корпоративными системами (CRM, ERP и т. д.);
  • наличие инструментов для анализа и визуализации данных;
  • соответствие отраслевым стандартам и нормативам (например, требованиям к защите персональных данных).

После анализа перечисленных факторов следует провести тестирование нескольких кандидатов из числа ПУД, чтобы оценить их удобство использования, производительность и способность решать специфические задачи бизнеса. Также целесообразно обратить внимание на репутацию разработчика, наличие технической поддержки и возможности обучения пользователей, что в долгосрочной перспективе повлияет на эффективность использования системы и её окупаемость.

7. Выгоды, преимущества и польза от применения Платформы управления данными

Платформы управления данными (ПУД) играют ключевую роль в оптимизации работы с данными в организациях, обеспечивая комплексный подход к их управлению и анализу. Их применение приносит ряд существенных преимуществ и выгод:

  • Централизованное хранение данных. ПУД позволяют создать единую точку доступа к данным, что упрощает их управление, обеспечивает целостность и актуальность информации, минимизирует риски потери данных.

  • Интеграция разнородных данных. ПУД обеспечивают возможность объединения данных из различных источников и в разных форматах, что позволяет получить полное представление о бизнес-процессах и улучшить качество анализа.

  • Повышение эффективности обработки данных. Благодаря мощным инструментам для обработки и анализа данных ПУД ускоряют процессы принятия решений, снижают время на поиск и анализ необходимой информации.

  • Улучшение качества данных. ПУД предоставляют механизмы для очистки, валидации и нормализации данных, что повышает их качество и достоверность, снижает количество ошибок в аналитике и отчётности.

  • Масштабируемость и гибкость. ПУД легко адаптируются под растущий объём данных и изменяющиеся бизнес-требования, позволяют расширять функциональность за счёт интеграции новых модулей и инструментов.

  • Упрощение работы с большими данными. ПУД обеспечивают инструменты для работы с большими объёмами данных (Big Data), позволяя эффективно анализировать тенденции, прогнозировать спрос и оптимизировать бизнес-процессы.

  • Усиление безопасности данных. ПУД включают механизмы защиты данных, контроля доступа и аудита действий с информацией, что снижает риски утечек и несанкционированного доступа к конфиденциальным данным.

8. Виды Платформы управления данными

Системы управления базами данных
Системы управления базами данных (СУБД, англ. Database Management Systems, DBMS) — это программное обеспечение, предназначенное для создания, хранения, модификации и извлечения данных из баз данных. СУБД позволяют эффективно управлять большими объёмами данных, обеспечивать их целостность, безопасность и быстрый доступ к информации.
Хранилища данных
Хранилища данных (ХД, англ. Data Warehouses, DWH) предназначены для приёма, объединения и хранения больших объёмов рабочих данных. ХД, в отличие от Систем управления базами данных, ориентированы на максимально быструю отработку любых запросов чтения, для чего предусматривают не редко реализацию механизмов предварительной подготовки данных типа аналитических кубов (OLAP, MOLAP, ROLAP), при этом ограничивая пользователя в возможностях изменения данных в хранилище.
Оркестраторы витрин данных
Оркестраторы витрин данных (ОВД, англ. Data Marts Orchestrators, DMO) — это инструменты или системы, которые автоматизируют процесс управления и координации потоков данных в витринах данных (Data Marts). Они обеспечивают сбор, преобразование, интеграцию и доставку данных из различных источников в витрины данных, чтобы обеспечить их актуальность, консистентность и доступность для анализа и отчётности. ОВД помогают оптимизировать процессы ETL (Extract, Transform, Load), управлять потоками данных и обеспечивать эффективное взаимодействие между различными системами и хранилищами данных.
Корпоративные хранилища данных
Корпоративные хранилища данных (КХД, англ. Enterprise Data Warehouses, EDW) предназначены для приёма, объединения и хранения больших объёмов рабочих данных. КХД ориентированы на максимально быструю отработку любых запросов на чтение сведений, для чего предусматривают реализацию механизмов предварительной подготовки данных типа аналитических кубов (OLAP, MOLAP, ROLAP).
Хранилища данных для интерактивной аналитической обработки
Хранилища данных для интерактивной аналитической обработки (ХД ИАО, англ. Data Warehouse for Online Analytical Processing , OLAP DWH) предназначены для приёма, объединения и хранения больших объёмов рабочих данных в соответствие с моделями данных типа аналитических кубов (OLAP, MOLAP, ROLAP). ХД ИАО ориентированы на максимально быструю отработку любых запросов на чтение сведений, для чего предусматривают реализацию механизмов предварительной подготовки данных.

9. Отличительные черты Платформы управления данными

Классификатор программных продуктов Соваре определяет конкретные функциональные критерии для систем. Для того, чтобы быть представленными на рынке Платформы управления данными, системы должны иметь следующие функциональные возможности:

  • объединение данных из различных источников и форматов в едином пространстве,
  • обеспечение эффективного хранения данных с учётом их объёма и структуры,
  • реализация механизмов перемещения данных между различными системами и хранилищами,
  • быстрая обработка данных, включая фильтрацию, сортировку и преобразование,
  • управление данными в рамках различных подходов и методологий, в том числе с применением специализированных алгоритмов и правил.

10. Тенденции в области Платформы управления данными

По аналитическим данным Соваре, в 2025 году на рынке платформ управления данными (ПУД) можно ожидать усиления тенденций, связанных с интеграцией искусственного интеллекта и машинного обучения для анализа и обработки данных, повышением требований к безопасности и конфиденциальности данных, развитием технологий распределённого хранения и обработки данных, а также с ростом популярности решений, ориентированных на управление большими объёмами данных и их аналитику в реальном времени.

  • Интеграция ИИ и машинного обучения. ПУД будут активно внедрять алгоритмы машинного обучения для автоматизации процессов обработки данных, прогнозирования трендов и выявления скрытых закономерностей в больших массивах информации.

  • Усиление защиты данных. В условиях растущего числа киберугроз разработчики ПУД будут уделять больше внимания шифрованию данных, многофакторной аутентификации и другим методам защиты информации.

  • Распределённое хранение данных. Технологии блокчейн и другие решения для распределённого хранения данных будут всё чаще использоваться в ПУД для обеспечения высокой доступности и надёжности хранения информации.

  • Обработка данных в реальном времени. ПУД будут предоставлять возможности для мгновенной обработки и анализа данных, что позволит компаниям быстрее реагировать на изменения рынка и принимать обоснованные решения.

  • Управление большими данными. Развитие технологий для работы с Big Data станет ключевым направлением, поскольку объёмы данных продолжают расти, и компании нуждаются в эффективных инструментах для их обработки и анализа.

  • Унификация и интероперабельность. ПУД будут стремиться к большей совместимости с другими системами и платформами, что облегчит обмен данными между различными информационными системами в компании.

  • Развитие облачных решений. Облачные платформы управления данными продолжат набирать популярность благодаря своей масштабируемости, гибкости и возможности снижения затрат на инфраструктуру.

11. В каких странах разрабатываются Платформы управления данными

Компании-разработчики, создающие data-management-platforms, работают в различных странах. Ниже перечислены программные продукты данного класса по странам происхождения
Гонконг (Китай)
HashData Warehouse
Финляндия
Aiven for PostgreSQL
Израиль
RavenDB
Китай
OceanBase, Oushu Data Cloud, Hyperbase, Transwarp ArgoDB, Transwarp StellarDB, MaxCompute, PolarDB, Alibaba Cloud AnalyticDB, E-MapReduce, Lindorm, Tablestore, Alibaba Cloud Tair, Alibaba Cloud Data Management, Alibaba Cloud ApsaraDB, Database Autonomy Service, Time Series Database for InfluxDB, TDSQL for MySQL, TDSQL-C, Tencent Cloud Data Lake Compute, TencentDB, TCHouse-D, GaussDB, Huawei Cloud GaussDB DWS, TaurusDB, Huawei RDS for MySQL, GeminiDB Redis APl, GeminiDB Mongo API, Huawei MapReduce Service, GeminiDB Cassandra API, GeminiDB Influx API, ZTE GoldenDB DBMS
Япония
Fujitsu Software Symfoware Server
Индия
Zen Embedded Database
Италия
witboost
США
Apache Airflow, TigerGraphDB, Treasure Data, YugabyteDB, Yellowbrick, MongoDB Atlas, TileDB Cloud, OpenEdge RDBMS Advanced Enterprise Edition, MarkLogic Server, InterSystems IRIS, Stardog, AllegroGraph, CockroachDB, Kinetica Streaming Data Warehouse, BlobCity DB, Percona Distribution for PostgreSQL, Db2, IBM Netezza Performance Server, IBM Informix, Db2 Warehouse, Db2 Big SQL, IBM Cloudant, Firebase Realtime Database, IBM Cloud Databases, Google Cloud SQL, DataProc, Google Cloud Spanner, Cloud Bigtable, Db2 Event Store, Cloud Memorystore for Redis, Cloud Firestore, AlloyDB for PostgreSQL, WatsonX.Data, Heroku Postgres, Heroku Data for Redis, VMware Tanzu Greenplum, ClickHouse Cloud, CrateDB, Dgraph, DataStax Enterprise, Astra DB, MariaDB Xpand, MariaDB Enterprise Server, SkySQL, Neo4j Graph Database, Instaclustr, Redis Enterprise Cloud, Rockset, Tessell, TiDB, Aerospike, ArangoDB, Cloudera Data Hub, Cloudera Data Warehouse, Cloudera Operational DB, Cloudera Stream Processing, Couchbase Server, Couchbase Capella, Couchbase Mobile, Panoply, SpliceMachine, Qubole Data Platform, VoltDB, EDB Postgres Advanced Server, EDB BigAnimal, FairCom DB, Oracle Database, Oracle Autonomous Database, Oracle Exadata Cloud@Customer, Oracle NoSQL Database, Oracle Exadata Database Service, Microsoft Azure Cosmos DB, Azure Database, Azure Data Lake, Amazon Redshift, Amazon Aurora, Amazon DynamoDB, Amazon RDS, Amazon DocumentDB, Amazon SimpleDB, Amazon Neptune, Amazon Keyspaces for Apache Cassandra, Amazon Timestream, SingleStore
Великобритания
FaunaDB
Швеция
Apica Lake
Канада
OpenText Vertica Analytics Database
Франция
NuoDB
Болгария
GraphDB
Россия
Nexign Nord, DataNewton, Гармония MDM, Планета. НСИ, Планета. Сервер, NextBox, LDM Платформа, Сакура PRO, Linkage ABI, N3.Аналитика, Visary DWH, RS-DataHouse, RT.KeyValue, ЛИНТЕР, Simpl.Данные, Pyrus, DEPOT, Тарантул Плюс, Юнидата Платформа управления данными, Proceset, pyOpenRPA, IndorRoad, AlmondFS, IndorCulvert, MDX-Эксперт, Кропикс, TeconOPC, IndorPower, Крибрум.Объекты, Крибрум.Зеркало, TransNet, Jatoba, Спектр, Базис.Cloud, Архива, СИБИ, SMARTS-Genesis, SharxStorage, ЛАН.Интернет-Архив, СтопФактор, ЛИК:ЭКСПЕРТ, Picodata, ENRSoft, Sqlite-BCD, ЛАН.Портал, Колибри-Сфера, Bravo, ЛАН.Хранилище, Алькир, DiaviDet, АТОЛЛ.УСОИ, Татлин-Обджект, NORVISION, CedrusData, PromUC, CerebroSQL, БГ.ИНТЕГРАЦИЯ, owl.Scan, KvantDetection, АЙТИ-СКАУТ, MED-Архив+, Кластрум, Vitastor, DELS-RTs, EcoDPIOS-DC, Алькир.Онлайн, LimeDB, ExpertISA, NetX-S, Консьерж, SKeeper, LogDoc, VectorForms, РПГ64, Vitiscale, ЛС2ДСканер, Rivc.DBC, StreamGate, Astra.Disk, MYCIE, VOL1.IO, Бизнес-аналитик, СИГМА.DATA, TargetAds, УМКАМАТЕРИАЛЫ, Демон Лапласа Инсайдер, Енисей, SaluteEye, DVPlatform, Outlytics, SafeDisk, NDBC.BI, Ключник, Айгач, BlazeData, ПОРТАЛ, DEPOT-R, АйБуре, Haribda, BlazeX, Гиперус.Инфраструктура, Мозг, Монолит.ERP, Геоаналитика, Odant, RT.Warehouse, RT.DataLake, RT.WideStore, RT.Streaming, N3.Платформа управления данными, БФТ.Хранилище, NitrosBase SQL, BI-Sphere, ЭльДокА, RAIDIX 5
Германия
SAP BW/4HANA, SAP Adaptive Server Enterprise, SAP SQL Anywhere, SAP IQ, SAP HANA Cloud, SAP Business Technology Platform

Сравнение Платформы управления данными (DMP)

Систем: 1

Apica Lake

Apica

Логотип не предоставлен разработчиком

Apica Lake — это платформа для управления данными, обеспечивающая сбор, хранение, анализ телеметрии и наблюдение за данными с применением ИИ и ML для оптимизации рабочих процессов.

Руководство по покупке Платформы управления данными

Что такое Платформы управления данными

Платформы управления данными (ПУД, англ. Data Management Platforms, DMP) предназначены для объединения, представления, хранения, перемещения, быстрой обработки и управления данными в различных форматах и в рамках различных подходов. В число ПУД входят системы различной специализации, от СУБД, являющихся сегодня стандартным средством управления данными в любой предметной области до Систем управления НСИ, являющихся системами управления прикладными сведениями в компаниях.

Зачем бизнесу Платформы управления данными

Управление данными как деятельность представляет собой комплекс процессов, направленных на сбор, хранение, обработку, анализ и распространение данных с целью обеспечения их доступности, целостности, актуальности и безопасности для поддержки бизнес-процессов и принятия обоснованных управленческих решений. Эта деятельность включает в себя не только технические аспекты работы с данными, но и организационные, методологические и управленческие компоненты, которые обеспечивают эффективное использование информационных активов компании.

Ключевые аспекты данного процесса:

  • сбор и интеграция данных из различных источников,
  • хранение данных с учётом требований к их доступности и безопасности,
  • обработка и трансформация данных для приведения их к единому формату и обеспечения возможности анализа,
  • обеспечение качества и целостности данных,
  • анализ данных для выявления закономерностей и получения инсайтов,
  • управление жизненным циклом данных, включая их архивацию и удаление,
  • обеспечение защиты данных от несанкционированного доступа и других угроз.

Важную роль в управлении данными играют цифровые (программные) решения, которые автоматизируют и оптимизируют процессы работы с данными. К таким решениям относятся платформы управления данными (ПУД), системы управления базами данных (СУБД), системы управления нормативно-справочной информацией (НСИ) и другие инструменты, позволяющие эффективно реализовывать все этапы управления данными и обеспечивать высокое качество информационной поддержки бизнеса.

Назначение и цели использования Платформы управления данными

Платформы управления данными предназначены для объединения и централизованного хранения разнородных данных, обеспечения их целостности, доступности и безопасности, а также для организации эффективного управления данными в рамках различных бизнес-процессов и аналитических задач. Они позволяют осуществлять сбор данных из множества источников, их трансформацию и очистку, обеспечивают механизмы для хранения и перемещения данных между различными системами и платформами, а также предоставляют инструменты для их структурирования и индексации, что необходимо для последующей обработки и анализа.

Кроме того, платформы управления данными обеспечивают возможности для быстрой обработки больших объёмов данных, реализации сложных запросов и аналитических операций, а также для построения систем отчётности и визуализации данных. Они поддерживают различные форматы данных и подходы к их управлению, включая реляционные и нереляционные модели, что позволяет адаптировать систему под специфические требования бизнеса и особенности предметной области. В число таких систем входят как системы управления базами данных (СУБД), являющиеся фундаментальным инструментом для работы с данными, так и системы управления нормативно-справочной информацией (НСИ), которые играют важную роль в управлении прикладными сведениями в организациях.

Основные пользователи Платформы управления данными

Платформы управления данными в основном используют следующие группы пользователей:

  • крупные и средние предприятия для централизации и управления большими объёмами данных, оптимизации бизнес-процессов и повышения эффективности принятия решений;
  • компании, работающие с клиентскими данными, для сегментации аудитории, персонализации маркетинговых кампаний и анализа поведения потребителей;
  • организации, занимающиеся аналитикой и Big Data, для обработки и анализа разнородных данных с целью выявления закономерностей и прогнозирования тенденций;
  • IT-компании и интеграторы при создании комплексных информационных систем, требующих гибкого управления данными и их интеграции из различных источников;
  • научные и образовательные учреждения для управления данными исследовательских проектов, учебных материалов и статистической информации.
Обзор основных функций и возможностей Платформы управления данными
Администрирование
Возможность администрирования позволяет осуществлять настройку и управление функциональностью системы, а также управление учётными записями и правами доступа к системе.
Импорт/экспорт данных
Возможность импорта и/или экспорта данных в продукте позволяет загрузить данные из наиболее популярных файловых форматов или выгрузить рабочие данные в файл для дальнейшего использования в другом ПО.
Многопользовательский доступ
Возможность многопользовательской доступа в программную систему обеспечивает одновременную работу нескольких пользователей на одной базе данных под собственными учётными записями. Пользователи в этом случае могут иметь отличающиеся права доступа к данным и функциям программного обеспечения.
Наличие API
Часто при использовании современного делового программного обеспечения возникает потребность автоматической передачи данных из одного ПО в другое. Например, может быть полезно автоматически передавать данные из Системы управления взаимоотношениями с клиентами (CRM) в Систему бухгалтерского учёта (БУ). Для обеспечения такого и подобных сопряжений программные системы оснащаются специальными Прикладными программными интерфейсами (англ. API, Application Programming Interface). С помощью таких API любые компетентные программисты смогут связать два программных продукта между собой для автоматического обмена информацией.
Отчётность и аналитика
Наличие у продукта функций подготовки отчётности и/или аналитики позволяют получать систематизированные и визуализированные данные из системы для последующего анализа и принятия решений на основе данных.
Рекомендации по выбору Платформы управления данными

На основе своего экспертного мнения Соваре рекомендует наиболее внимательно подходить к выбору решения. При выборе программного продукта из функционального класса Платформы управления данными (ПУД) необходимо учитывать ряд ключевых факторов, которые определят пригодность системы для решения конкретных бизнес-задач. Прежде всего, следует проанализировать масштаб деятельности компании: для малого и среднего бизнеса могут подойти более простые и гибкие решения с базовым набором функций, тогда как крупным корпорациям потребуются масштабируемые системы с высокой производительностью и возможностью интеграции с большим количеством внешних систем. Также важно учитывать отраслевые требования и стандарты — например, в финансовом секторе и здравоохранении действуют строгие правила обработки и хранения данных, требующие соответствия системы определённым нормативам безопасности и конфиденциальности. Технические ограничения, такие как существующая ИТ-инфраструктура, поддерживаемые форматы данных и требования к производительности, также играют значительную роль в выборе ПУД.

Ключевые аспекты при принятии решения:

  • совместимость с текущей ИТ-инфраструктурой (например, поддержка определённых операционных систем и аппаратных платформ);
  • возможности масштабирования (поддержка роста объёма данных и числа пользователей);
  • наличие механизмов обеспечения безопасности данных (шифрование, аутентификация, аудит доступа);
  • поддержка различных форматов данных и источников (структурированные и неструктурированные данные, данные из внешних API и баз данных);
  • функциональность для работы с метаданными и управления качеством данных (очистка, валидация, стандартизация);
  • возможности интеграции с другими корпоративными системами (CRM, ERP и т. д.);
  • наличие инструментов для анализа и визуализации данных;
  • соответствие отраслевым стандартам и нормативам (например, требованиям к защите персональных данных).

После анализа перечисленных факторов следует провести тестирование нескольких кандидатов из числа ПУД, чтобы оценить их удобство использования, производительность и способность решать специфические задачи бизнеса. Также целесообразно обратить внимание на репутацию разработчика, наличие технической поддержки и возможности обучения пользователей, что в долгосрочной перспективе повлияет на эффективность использования системы и её окупаемость.

Выгоды, преимущества и польза от применения Платформы управления данными

Платформы управления данными (ПУД) играют ключевую роль в оптимизации работы с данными в организациях, обеспечивая комплексный подход к их управлению и анализу. Их применение приносит ряд существенных преимуществ и выгод:

  • Централизованное хранение данных. ПУД позволяют создать единую точку доступа к данным, что упрощает их управление, обеспечивает целостность и актуальность информации, минимизирует риски потери данных.

  • Интеграция разнородных данных. ПУД обеспечивают возможность объединения данных из различных источников и в разных форматах, что позволяет получить полное представление о бизнес-процессах и улучшить качество анализа.

  • Повышение эффективности обработки данных. Благодаря мощным инструментам для обработки и анализа данных ПУД ускоряют процессы принятия решений, снижают время на поиск и анализ необходимой информации.

  • Улучшение качества данных. ПУД предоставляют механизмы для очистки, валидации и нормализации данных, что повышает их качество и достоверность, снижает количество ошибок в аналитике и отчётности.

  • Масштабируемость и гибкость. ПУД легко адаптируются под растущий объём данных и изменяющиеся бизнес-требования, позволяют расширять функциональность за счёт интеграции новых модулей и инструментов.

  • Упрощение работы с большими данными. ПУД обеспечивают инструменты для работы с большими объёмами данных (Big Data), позволяя эффективно анализировать тенденции, прогнозировать спрос и оптимизировать бизнес-процессы.

  • Усиление безопасности данных. ПУД включают механизмы защиты данных, контроля доступа и аудита действий с информацией, что снижает риски утечек и несанкционированного доступа к конфиденциальным данным.

Виды Платформы управления данными
Системы управления базами данных
Системы управления базами данных (СУБД, англ. Database Management Systems, DBMS) — это программное обеспечение, предназначенное для создания, хранения, модификации и извлечения данных из баз данных. СУБД позволяют эффективно управлять большими объёмами данных, обеспечивать их целостность, безопасность и быстрый доступ к информации.
Хранилища данных
Хранилища данных (ХД, англ. Data Warehouses, DWH) предназначены для приёма, объединения и хранения больших объёмов рабочих данных. ХД, в отличие от Систем управления базами данных, ориентированы на максимально быструю отработку любых запросов чтения, для чего предусматривают не редко реализацию механизмов предварительной подготовки данных типа аналитических кубов (OLAP, MOLAP, ROLAP), при этом ограничивая пользователя в возможностях изменения данных в хранилище.
Оркестраторы витрин данных
Оркестраторы витрин данных (ОВД, англ. Data Marts Orchestrators, DMO) — это инструменты или системы, которые автоматизируют процесс управления и координации потоков данных в витринах данных (Data Marts). Они обеспечивают сбор, преобразование, интеграцию и доставку данных из различных источников в витрины данных, чтобы обеспечить их актуальность, консистентность и доступность для анализа и отчётности. ОВД помогают оптимизировать процессы ETL (Extract, Transform, Load), управлять потоками данных и обеспечивать эффективное взаимодействие между различными системами и хранилищами данных.
Корпоративные хранилища данных
Корпоративные хранилища данных (КХД, англ. Enterprise Data Warehouses, EDW) предназначены для приёма, объединения и хранения больших объёмов рабочих данных. КХД ориентированы на максимально быструю отработку любых запросов на чтение сведений, для чего предусматривают реализацию механизмов предварительной подготовки данных типа аналитических кубов (OLAP, MOLAP, ROLAP).
Хранилища данных для интерактивной аналитической обработки
Хранилища данных для интерактивной аналитической обработки (ХД ИАО, англ. Data Warehouse for Online Analytical Processing , OLAP DWH) предназначены для приёма, объединения и хранения больших объёмов рабочих данных в соответствие с моделями данных типа аналитических кубов (OLAP, MOLAP, ROLAP). ХД ИАО ориентированы на максимально быструю отработку любых запросов на чтение сведений, для чего предусматривают реализацию механизмов предварительной подготовки данных.
Отличительные черты Платформы управления данными

Классификатор программных продуктов Соваре определяет конкретные функциональные критерии для систем. Для того, чтобы быть представленными на рынке Платформы управления данными, системы должны иметь следующие функциональные возможности:

  • объединение данных из различных источников и форматов в едином пространстве,
  • обеспечение эффективного хранения данных с учётом их объёма и структуры,
  • реализация механизмов перемещения данных между различными системами и хранилищами,
  • быстрая обработка данных, включая фильтрацию, сортировку и преобразование,
  • управление данными в рамках различных подходов и методологий, в том числе с применением специализированных алгоритмов и правил.
Тенденции в области Платформы управления данными

По аналитическим данным Соваре, в 2025 году на рынке платформ управления данными (ПУД) можно ожидать усиления тенденций, связанных с интеграцией искусственного интеллекта и машинного обучения для анализа и обработки данных, повышением требований к безопасности и конфиденциальности данных, развитием технологий распределённого хранения и обработки данных, а также с ростом популярности решений, ориентированных на управление большими объёмами данных и их аналитику в реальном времени.

  • Интеграция ИИ и машинного обучения. ПУД будут активно внедрять алгоритмы машинного обучения для автоматизации процессов обработки данных, прогнозирования трендов и выявления скрытых закономерностей в больших массивах информации.

  • Усиление защиты данных. В условиях растущего числа киберугроз разработчики ПУД будут уделять больше внимания шифрованию данных, многофакторной аутентификации и другим методам защиты информации.

  • Распределённое хранение данных. Технологии блокчейн и другие решения для распределённого хранения данных будут всё чаще использоваться в ПУД для обеспечения высокой доступности и надёжности хранения информации.

  • Обработка данных в реальном времени. ПУД будут предоставлять возможности для мгновенной обработки и анализа данных, что позволит компаниям быстрее реагировать на изменения рынка и принимать обоснованные решения.

  • Управление большими данными. Развитие технологий для работы с Big Data станет ключевым направлением, поскольку объёмы данных продолжают расти, и компании нуждаются в эффективных инструментах для их обработки и анализа.

  • Унификация и интероперабельность. ПУД будут стремиться к большей совместимости с другими системами и платформами, что облегчит обмен данными между различными информационными системами в компании.

  • Развитие облачных решений. Облачные платформы управления данными продолжат набирать популярность благодаря своей масштабируемости, гибкости и возможности снижения затрат на инфраструктуру.

В каких странах разрабатываются Платформы управления данными
Компании-разработчики, создающие data-management-platforms, работают в различных странах. Ниже перечислены программные продукты данного класса по странам происхождения
Гонконг (Китай)
HashData Warehouse
Финляндия
Aiven for PostgreSQL
Израиль
RavenDB
Китай
OceanBase, Oushu Data Cloud, Hyperbase, Transwarp ArgoDB, Transwarp StellarDB, MaxCompute, PolarDB, Alibaba Cloud AnalyticDB, E-MapReduce, Lindorm, Tablestore, Alibaba Cloud Tair, Alibaba Cloud Data Management, Alibaba Cloud ApsaraDB, Database Autonomy Service, Time Series Database for InfluxDB, TDSQL for MySQL, TDSQL-C, Tencent Cloud Data Lake Compute, TencentDB, TCHouse-D, GaussDB, Huawei Cloud GaussDB DWS, TaurusDB, Huawei RDS for MySQL, GeminiDB Redis APl, GeminiDB Mongo API, Huawei MapReduce Service, GeminiDB Cassandra API, GeminiDB Influx API, ZTE GoldenDB DBMS
Япония
Fujitsu Software Symfoware Server
Индия
Zen Embedded Database
Италия
witboost
США
Apache Airflow, TigerGraphDB, Treasure Data, YugabyteDB, Yellowbrick, MongoDB Atlas, TileDB Cloud, OpenEdge RDBMS Advanced Enterprise Edition, MarkLogic Server, InterSystems IRIS, Stardog, AllegroGraph, CockroachDB, Kinetica Streaming Data Warehouse, BlobCity DB, Percona Distribution for PostgreSQL, Db2, IBM Netezza Performance Server, IBM Informix, Db2 Warehouse, Db2 Big SQL, IBM Cloudant, Firebase Realtime Database, IBM Cloud Databases, Google Cloud SQL, DataProc, Google Cloud Spanner, Cloud Bigtable, Db2 Event Store, Cloud Memorystore for Redis, Cloud Firestore, AlloyDB for PostgreSQL, WatsonX.Data, Heroku Postgres, Heroku Data for Redis, VMware Tanzu Greenplum, ClickHouse Cloud, CrateDB, Dgraph, DataStax Enterprise, Astra DB, MariaDB Xpand, MariaDB Enterprise Server, SkySQL, Neo4j Graph Database, Instaclustr, Redis Enterprise Cloud, Rockset, Tessell, TiDB, Aerospike, ArangoDB, Cloudera Data Hub, Cloudera Data Warehouse, Cloudera Operational DB, Cloudera Stream Processing, Couchbase Server, Couchbase Capella, Couchbase Mobile, Panoply, SpliceMachine, Qubole Data Platform, VoltDB, EDB Postgres Advanced Server, EDB BigAnimal, FairCom DB, Oracle Database, Oracle Autonomous Database, Oracle Exadata Cloud@Customer, Oracle NoSQL Database, Oracle Exadata Database Service, Microsoft Azure Cosmos DB, Azure Database, Azure Data Lake, Amazon Redshift, Amazon Aurora, Amazon DynamoDB, Amazon RDS, Amazon DocumentDB, Amazon SimpleDB, Amazon Neptune, Amazon Keyspaces for Apache Cassandra, Amazon Timestream, SingleStore
Великобритания
FaunaDB
Швеция
Apica Lake
Канада
OpenText Vertica Analytics Database
Франция
NuoDB
Болгария
GraphDB
Россия
Nexign Nord, DataNewton, Гармония MDM, Планета. НСИ, Планета. Сервер, NextBox, LDM Платформа, Сакура PRO, Linkage ABI, N3.Аналитика, Visary DWH, RS-DataHouse, RT.KeyValue, ЛИНТЕР, Simpl.Данные, Pyrus, DEPOT, Тарантул Плюс, Юнидата Платформа управления данными, Proceset, pyOpenRPA, IndorRoad, AlmondFS, IndorCulvert, MDX-Эксперт, Кропикс, TeconOPC, IndorPower, Крибрум.Объекты, Крибрум.Зеркало, TransNet, Jatoba, Спектр, Базис.Cloud, Архива, СИБИ, SMARTS-Genesis, SharxStorage, ЛАН.Интернет-Архив, СтопФактор, ЛИК:ЭКСПЕРТ, Picodata, ENRSoft, Sqlite-BCD, ЛАН.Портал, Колибри-Сфера, Bravo, ЛАН.Хранилище, Алькир, DiaviDet, АТОЛЛ.УСОИ, Татлин-Обджект, NORVISION, CedrusData, PromUC, CerebroSQL, БГ.ИНТЕГРАЦИЯ, owl.Scan, KvantDetection, АЙТИ-СКАУТ, MED-Архив+, Кластрум, Vitastor, DELS-RTs, EcoDPIOS-DC, Алькир.Онлайн, LimeDB, ExpertISA, NetX-S, Консьерж, SKeeper, LogDoc, VectorForms, РПГ64, Vitiscale, ЛС2ДСканер, Rivc.DBC, StreamGate, Astra.Disk, MYCIE, VOL1.IO, Бизнес-аналитик, СИГМА.DATA, TargetAds, УМКАМАТЕРИАЛЫ, Демон Лапласа Инсайдер, Енисей, SaluteEye, DVPlatform, Outlytics, SafeDisk, NDBC.BI, Ключник, Айгач, BlazeData, ПОРТАЛ, DEPOT-R, АйБуре, Haribda, BlazeX, Гиперус.Инфраструктура, Мозг, Монолит.ERP, Геоаналитика, Odant, RT.Warehouse, RT.DataLake, RT.WideStore, RT.Streaming, N3.Платформа управления данными, БФТ.Хранилище, NitrosBase SQL, BI-Sphere, ЭльДокА, RAIDIX 5
Германия
SAP BW/4HANA, SAP Adaptive Server Enterprise, SAP SQL Anywhere, SAP IQ, SAP HANA Cloud, SAP Business Technology Platform
Soware логотип
Soware является основным источником сведений о прикладном программном обеспечении для предприятий. Используя наш обширный каталог категорий и программных продуктов, лица, принимающие решения в России и странах СНГ получают бесплатный инструмент для выбора и сравнения систем от разных разработчиков
Соваре, ООО Санкт-Петербург, Россия info@soware.ru
2025 Soware.Ru - Умный выбор систем для бизнеса