Логотип Soware
Логотип Soware

Немецкие (Германские) Системы обработки данных

Системы обработки данных (СОД, англ. Data Processing Systems, DP) — это программные комплексы для автоматизированной трансформации, фильтрации и агрегации данных из различных источников. Они обеспечивают выполнение вычислительных операций, преобразование форматов и подготовку информации к анализу или дальнейшей передаче в целевые системы.

Сравнение Системы обработки данных

Выбрать по критериям:

Категории
Подходит для
Функции
Тарификация
Развёртывание
Графический интерфейс
Поддержка языков
Страна происхождения
Сортировать:
Систем: 2
Логотип не предоставлен разработчиком

One Data AI-Powered Data Product Builder от One Data

One Data AI-Powered Data Product Builder — это инструмент для подготовки данных, автоматизирующий создание и управление данными с помощью ИИ, устраняющий разрозненность данных и облегчающий взаимодействие экспертов и бизнес-пользователей. Узнать больше про One Data AI-Powered Data Product Builder

Логотип не предоставлен разработчиком

SAP Agile Data Preparation от SAP SE

SAP Agile Data Preparation — это инструмент для подготовки данных, упрощающий очистку, трансформацию и обогащение данных в бизнес-процессах компаний. Узнать больше про SAP Agile Data Preparation

Руководство по покупке Системы обработки данных

1. Что такое Системы обработки данных

Системы обработки данных (СОД, англ. Data Processing Systems, DP) — это программные комплексы для автоматизированной трансформации, фильтрации и агрегации данных из различных источников. Они обеспечивают выполнение вычислительных операций, преобразование форматов и подготовку информации к анализу или дальнейшей передаче в целевые системы.

2. Зачем бизнесу Системы обработки данных

Обработка данных как деятельность представляет собой комплекс операций, направленных на преобразование исходной информации в форму, пригодную для анализа, хранения или передачи. Она включает в себя сбор данных из различных источников, их фильтрацию, агрегацию, трансформацию форматов, выполнение вычислительных и логических операций, а также подготовку информации для последующего использования в корпоративных информационных системах, аналитических платформах или других целевых системах. Обработка данных лежит в основе функционирования многих бизнес-процессов и является ключевым элементом в работе с информационными ресурсами организации.

Обработка данных как процесс, позволяет фокусироваться на следующих аспектах деятельности:

  • сбор данных из разнородных источников,
  • фильтрация и очистка данных от ошибок и аномалий,
  • преобразование данных в единый формат,
  • агрегация и суммирование данных для получения обобщённых показателей,
  • выполнение расчётов и аналитических операций,
  • обеспечение интеграции данных с другими системами и сервисами,
  • подготовка данных для аналитических и управленческих задач.

Эффективность обработки данных во многом определяется качеством используемых программных решений. Современные системы обработки данных (СОД) позволяют автоматизировать большую часть процессов, повысить скорость и точность работы с информацией, обеспечить масштабируемость и гибкость при работе с растущими объёмами данных. Цифровые (программные) решения играют важную роль в оптимизации процессов обработки данных, позволяя организациям оперативно реагировать на изменения внешней среды и внутренних требований бизнеса.

3. Назначение и цели использования Системы обработки данных

Системы обработки данных предназначены для автоматизированной трансформации, фильтрации и агрегации данных, получаемых из разнородных источников. Они позволяют осуществлять комплексную обработку информации, выполняя вычислительные операции, преобразуя данные из одного формата в другой и подготавливая их для последующего анализа или передачи в целевые системы.

Функциональное предназначение СОД заключается в обеспечении эффективного управления данными и оптимизации процессов их обработки в информационных системах организаций. Такие системы способствуют снижению временных и ресурсных затрат на рутинные операции с данными, повышают точность и скорость их обработки, а также обеспечивают совместимость данных между различными информационными системами и платформами.

4. Обзор основных функций и возможностей Системы обработки данных

Администрирование
Возможность администрирования позволяет осуществлять настройку и управление функциональностью системы, а также управление учётными записями и правами доступа к системе.
Импорт/экспорт данных
Возможность импорта и/или экспорта данных в продукте позволяет загрузить данные из наиболее популярных файловых форматов или выгрузить рабочие данные в файл для дальнейшего использования в другом ПО.
Многопользовательский доступ
Возможность многопользовательской доступа в программную систему обеспечивает одновременную работу нескольких пользователей на одной базе данных под собственными учётными записями. Пользователи в этом случае могут иметь отличающиеся права доступа к данным и функциям программного обеспечения.
Наличие API
Часто при использовании современного делового программного обеспечения возникает потребность автоматической передачи данных из одного ПО в другое. Например, может быть полезно автоматически передавать данные из Системы управления взаимоотношениями с клиентами (CRM) в Систему бухгалтерского учёта (БУ). Для обеспечения такого и подобных сопряжений программные системы оснащаются специальными Прикладными программными интерфейсами (англ. API, Application Programming Interface). С помощью таких API любые компетентные программисты смогут связать два программных продукта между собой для автоматического обмена информацией.
Отчётность и аналитика
Наличие у продукта функций подготовки отчётности и/или аналитики позволяют получать систематизированные и визуализированные данные из системы для последующего анализа и принятия решений на основе данных.

5. Виды Системы обработки данных

Средства подготовки данных
Средства подготовки данных (СПД, англ. Data Preparation Tools, DP) — это программные решения для очистки, интеграции и преобразования сырых данных из различных источников в структурированный формат. Они обеспечивают профилирование данных, устранение ошибок, нормализацию, обогащение и подготовку наборов информации для анализа, машинного обучения и бизнес‑отчётности.
Системы обработки больших данных
Системы обработки больших данных (СОБД, англ. Big Data Processing Systems, BigData) – это комплекс программных и аппаратных средств, предназначенных для сбора, хранения, обработки и анализа больших объёмов данных. Они позволяют выявлять закономерности, тренды и ценную информацию, которые могут быть недоступны при использовании традиционных методов обработки данных, и применяются в различных областях, включая бизнес, науку, медицину и государственное управление.

6. Тенденции в области Системы обработки данных

По оценке аналитиков Soware, в 2026 году на рынке систем обработки данных (СОД) можно ожидать усиления тенденций, связанных с повышением эффективности обработки больших объёмов данных, интеграцией технологий искусственного интеллекта и машинного обучения, развитием облачных решений, усилением требований к безопасности и конфиденциальности данных, а также расширением возможностей для работы с разнородными источниками информации.

Системы обработки данных в 2026 году будут развиваться с высоким фокусом внимания на следующие тренды:

  • Интеграция ИИ и машинного обучения. СОД будут активнее использовать алгоритмы машинного обучения для автоматизации анализа данных, выявления закономерностей и прогнозирования, что повысит точность и скорость обработки информации.

  • Развитие облачных платформ. Увеличение доли облачных решений позволит масштабировать системы обработки данных, упростит доступ к вычислительным ресурсам и снизит затраты на инфраструктуру.

  • Повышение требований к безопасности. В условиях роста объёмов данных и киберугроз разработчики СОД будут уделять больше внимания шифрованию, аутентификации и другим механизмам защиты информации.

  • Работа с разнородными данными. СОД будут предоставлять более гибкие инструменты для интеграции и обработки данных из различных источников, включая неструктурированные и полуструктурированные данные.

  • Автоматизация ETL-процессов. Системы будут предлагать более продвинутые инструменты для извлечения, трансформации и загрузки данных, что упростит подготовку информации для анализа и принятия решений.

  • Применение технологий распределённых вычислений. Распределённые вычислительные сети позволят обрабатывать данные с высокой скоростью и эффективностью, особенно в случаях, когда требуется обработка огромных объёмов информации.

  • Развитие технологий потоковой обработки данных. СОД будут обеспечивать более эффективную обработку данных в режиме реального времени, что важно для отраслей, где критична скорость принятия решений.

7. В каких странах разрабатываются Системы обработки данных

Компании-разработчики, создающие data-processing-systems, работают в различных странах. Ниже перечислены программные продукты данного класса по странам происхождения
Россия
RT.DataLake, Sceptor, WideTrack, Крибрум.Объекты, Крибрум.Зеркало, OT.ПЛАТФОРМА, WireGeo, Techcrowd.ai, TenDataAI, WINDYNAMIC, ЛАН.Интернет-Архив, DATASKAI, ВРТех, СОРМ-3, DataFlow, Phoenix.Data, CedrusData, DEERAY, OTRiSet, KvantDetection, Зонд2015, Accelera, СберИмпульс, Р13.САТУРН, Дефектоскоп, ИндексЛог, InnData, Talisman, EcoDPIOS-DC, Скоринг-2, СОППО, ТРОПАСС, Бизнес-аналитик, FLEXGIS, Vaultee, TargetAds, OTRi.DI, OTRi.DG, SaluteEye, GGI, Dat.ax, NDBC.BI, GigaEye, WebLab
Великобритания
Indigo DQM Data Management System
Индия
Smarten Self Serve Data Preparation, Predictly Tech LAbs Data Annotation
Ирландия
BDM Health
США
DDS Terra, Rapid Insight Construct, Zaloni Arena, Cloud Dataprep by Trifacta, Quest Toad Data Point, Informatica Enterprise Data Preparation, Trifacta Wrangler Enterprise, Alteryx Analytics Hub, Alteryx Machine Learning, Explorium Signal Studio, Explorium External Data Platform, DDS IRIS, Enterprise Data Mastering, Infosphere Advanced Data Preparation, SAS Data Preparation, JMP, Microsoft Purview Audit, PlaidCloud
Германия
SAP Agile Data Preparation, One Data AI-Powered Data Product Builder
Канада
EasyMorph

Сравнение Системы обработки данных

Систем: 2

One Data AI-Powered Data Product Builder

One Data

Логотип не предоставлен разработчиком

One Data AI-Powered Data Product Builder — это инструмент для подготовки данных, автоматизирующий создание и управление данными с помощью ИИ, устраняющий разрозненность данных и облегчающий взаимодействие экспертов и бизнес-пользователей.

SAP Agile Data Preparation

SAP SE

Логотип не предоставлен разработчиком

SAP Agile Data Preparation — это инструмент для подготовки данных, упрощающий очистку, трансформацию и обогащение данных в бизнес-процессах компаний.

Руководство по покупке Системы обработки данных

Что такое Системы обработки данных

Системы обработки данных (СОД, англ. Data Processing Systems, DP) — это программные комплексы для автоматизированной трансформации, фильтрации и агрегации данных из различных источников. Они обеспечивают выполнение вычислительных операций, преобразование форматов и подготовку информации к анализу или дальнейшей передаче в целевые системы.

Зачем бизнесу Системы обработки данных

Обработка данных как деятельность представляет собой комплекс операций, направленных на преобразование исходной информации в форму, пригодную для анализа, хранения или передачи. Она включает в себя сбор данных из различных источников, их фильтрацию, агрегацию, трансформацию форматов, выполнение вычислительных и логических операций, а также подготовку информации для последующего использования в корпоративных информационных системах, аналитических платформах или других целевых системах. Обработка данных лежит в основе функционирования многих бизнес-процессов и является ключевым элементом в работе с информационными ресурсами организации.

Обработка данных как процесс, позволяет фокусироваться на следующих аспектах деятельности:

  • сбор данных из разнородных источников,
  • фильтрация и очистка данных от ошибок и аномалий,
  • преобразование данных в единый формат,
  • агрегация и суммирование данных для получения обобщённых показателей,
  • выполнение расчётов и аналитических операций,
  • обеспечение интеграции данных с другими системами и сервисами,
  • подготовка данных для аналитических и управленческих задач.

Эффективность обработки данных во многом определяется качеством используемых программных решений. Современные системы обработки данных (СОД) позволяют автоматизировать большую часть процессов, повысить скорость и точность работы с информацией, обеспечить масштабируемость и гибкость при работе с растущими объёмами данных. Цифровые (программные) решения играют важную роль в оптимизации процессов обработки данных, позволяя организациям оперативно реагировать на изменения внешней среды и внутренних требований бизнеса.

Назначение и цели использования Системы обработки данных

Системы обработки данных предназначены для автоматизированной трансформации, фильтрации и агрегации данных, получаемых из разнородных источников. Они позволяют осуществлять комплексную обработку информации, выполняя вычислительные операции, преобразуя данные из одного формата в другой и подготавливая их для последующего анализа или передачи в целевые системы.

Функциональное предназначение СОД заключается в обеспечении эффективного управления данными и оптимизации процессов их обработки в информационных системах организаций. Такие системы способствуют снижению временных и ресурсных затрат на рутинные операции с данными, повышают точность и скорость их обработки, а также обеспечивают совместимость данных между различными информационными системами и платформами.

Обзор основных функций и возможностей Системы обработки данных
Администрирование
Возможность администрирования позволяет осуществлять настройку и управление функциональностью системы, а также управление учётными записями и правами доступа к системе.
Импорт/экспорт данных
Возможность импорта и/или экспорта данных в продукте позволяет загрузить данные из наиболее популярных файловых форматов или выгрузить рабочие данные в файл для дальнейшего использования в другом ПО.
Многопользовательский доступ
Возможность многопользовательской доступа в программную систему обеспечивает одновременную работу нескольких пользователей на одной базе данных под собственными учётными записями. Пользователи в этом случае могут иметь отличающиеся права доступа к данным и функциям программного обеспечения.
Наличие API
Часто при использовании современного делового программного обеспечения возникает потребность автоматической передачи данных из одного ПО в другое. Например, может быть полезно автоматически передавать данные из Системы управления взаимоотношениями с клиентами (CRM) в Систему бухгалтерского учёта (БУ). Для обеспечения такого и подобных сопряжений программные системы оснащаются специальными Прикладными программными интерфейсами (англ. API, Application Programming Interface). С помощью таких API любые компетентные программисты смогут связать два программных продукта между собой для автоматического обмена информацией.
Отчётность и аналитика
Наличие у продукта функций подготовки отчётности и/или аналитики позволяют получать систематизированные и визуализированные данные из системы для последующего анализа и принятия решений на основе данных.
Виды Системы обработки данных
Средства подготовки данных
Средства подготовки данных (СПД, англ. Data Preparation Tools, DP) — это программные решения для очистки, интеграции и преобразования сырых данных из различных источников в структурированный формат. Они обеспечивают профилирование данных, устранение ошибок, нормализацию, обогащение и подготовку наборов информации для анализа, машинного обучения и бизнес‑отчётности.
Системы обработки больших данных
Системы обработки больших данных (СОБД, англ. Big Data Processing Systems, BigData) – это комплекс программных и аппаратных средств, предназначенных для сбора, хранения, обработки и анализа больших объёмов данных. Они позволяют выявлять закономерности, тренды и ценную информацию, которые могут быть недоступны при использовании традиционных методов обработки данных, и применяются в различных областях, включая бизнес, науку, медицину и государственное управление.
Тенденции в области Системы обработки данных

По оценке аналитиков Soware, в 2026 году на рынке систем обработки данных (СОД) можно ожидать усиления тенденций, связанных с повышением эффективности обработки больших объёмов данных, интеграцией технологий искусственного интеллекта и машинного обучения, развитием облачных решений, усилением требований к безопасности и конфиденциальности данных, а также расширением возможностей для работы с разнородными источниками информации.

Системы обработки данных в 2026 году будут развиваться с высоким фокусом внимания на следующие тренды:

  • Интеграция ИИ и машинного обучения. СОД будут активнее использовать алгоритмы машинного обучения для автоматизации анализа данных, выявления закономерностей и прогнозирования, что повысит точность и скорость обработки информации.

  • Развитие облачных платформ. Увеличение доли облачных решений позволит масштабировать системы обработки данных, упростит доступ к вычислительным ресурсам и снизит затраты на инфраструктуру.

  • Повышение требований к безопасности. В условиях роста объёмов данных и киберугроз разработчики СОД будут уделять больше внимания шифрованию, аутентификации и другим механизмам защиты информации.

  • Работа с разнородными данными. СОД будут предоставлять более гибкие инструменты для интеграции и обработки данных из различных источников, включая неструктурированные и полуструктурированные данные.

  • Автоматизация ETL-процессов. Системы будут предлагать более продвинутые инструменты для извлечения, трансформации и загрузки данных, что упростит подготовку информации для анализа и принятия решений.

  • Применение технологий распределённых вычислений. Распределённые вычислительные сети позволят обрабатывать данные с высокой скоростью и эффективностью, особенно в случаях, когда требуется обработка огромных объёмов информации.

  • Развитие технологий потоковой обработки данных. СОД будут обеспечивать более эффективную обработку данных в режиме реального времени, что важно для отраслей, где критична скорость принятия решений.

В каких странах разрабатываются Системы обработки данных
Компании-разработчики, создающие data-processing-systems, работают в различных странах. Ниже перечислены программные продукты данного класса по странам происхождения
Россия
RT.DataLake, Sceptor, WideTrack, Крибрум.Объекты, Крибрум.Зеркало, OT.ПЛАТФОРМА, WireGeo, Techcrowd.ai, TenDataAI, WINDYNAMIC, ЛАН.Интернет-Архив, DATASKAI, ВРТех, СОРМ-3, DataFlow, Phoenix.Data, CedrusData, DEERAY, OTRiSet, KvantDetection, Зонд2015, Accelera, СберИмпульс, Р13.САТУРН, Дефектоскоп, ИндексЛог, InnData, Talisman, EcoDPIOS-DC, Скоринг-2, СОППО, ТРОПАСС, Бизнес-аналитик, FLEXGIS, Vaultee, TargetAds, OTRi.DI, OTRi.DG, SaluteEye, GGI, Dat.ax, NDBC.BI, GigaEye, WebLab
Великобритания
Indigo DQM Data Management System
Индия
Smarten Self Serve Data Preparation, Predictly Tech LAbs Data Annotation
Ирландия
BDM Health
США
DDS Terra, Rapid Insight Construct, Zaloni Arena, Cloud Dataprep by Trifacta, Quest Toad Data Point, Informatica Enterprise Data Preparation, Trifacta Wrangler Enterprise, Alteryx Analytics Hub, Alteryx Machine Learning, Explorium Signal Studio, Explorium External Data Platform, DDS IRIS, Enterprise Data Mastering, Infosphere Advanced Data Preparation, SAS Data Preparation, JMP, Microsoft Purview Audit, PlaidCloud
Германия
SAP Agile Data Preparation, One Data AI-Powered Data Product Builder
Канада
EasyMorph
Soware логотип
Soware является основным источником сведений о прикладном программном обеспечении для предприятий. Используя наш обширный каталог категорий и программных продуктов, лица, принимающие решения в России и странах СНГ получают бесплатный инструмент для выбора и сравнения систем от разных разработчиков
Соваре, ООО Санкт-Петербург, Россия info@soware.ru
2026 Soware.Ru - Умный выбор систем для бизнеса