Модели генеративного искусственного интеллекта (МГИИ, англ. Generative Artificial Intelligence Models, ICG) — это класс алгоритмов и систем машинного обучения, способных создавать новый уникальный контент (тексты, изображения, аудио, видео) на основе анализа больших массивов данных, в отличие от традиционного ИИ они генерируют оригинальные материалы, а не просто анализируют существующие.
Классификатор программных продуктов Соваре определяет конкретные функциональные критерии для систем. Для того, чтобы быть представленными на рынке Модели генеративного искусственного интеллекта, системы должны иметь следующие функциональные возможности:
OpenAI Sora — это система генеративного ИИ, предназначенная для создания контента на основе текстовых запросов. Узнать больше про OpenAI Sora
RoboGPT — это комплексная платформа искусственного интеллекта для создания текстового и визуального контента с поддержкой более 10 языков и широким набором инструментов для бизнеса и маркетинга. Узнать больше про RoboGPT
Сократик — это ИИ-сервис для мгновенного создания презентаций, предлагающий готовые шаблоны, текст, изображения, графики. Система позволяет редактировать презентации онлайн с ИИ и скачивать их в форматах PPTX и PDF. Узнать больше про Сократик
Grok— это генеративная языковая модель с ИИ-компонентами, способная анализировать данные в реальном времени и генерировать креативный контент с учётом контекста. Узнать больше про Grok
Arcads — это платформа на базе искусственного интеллекта для создания маркетинговых видео с помощью AI-аватаров, автоматической генерации сценариев и тестирования рекламных материалов в реальном времени. Узнать больше про Arcads
GPT-4o — это мультимодальная модель искусственного интеллекта, способная обрабатывать текст, изображения и аудио в режиме реального времени, с поддержкой более 50 языков и возможностью голосового взаимодействия. Узнать больше про GPT-4o
Imagen — это система искусственного интеллекта для создания и обработки фотореалистичных изображений по текстовому описанию с высокой точностью детализации. Узнать больше про Imagen
ruGPT — это российская система искусственного интеллекта для работы с текстовой информацией на русском языке, основанная на технологии генеративных предобученных моделей. Узнать больше про ruGPT
Нейротекстер — это система генеративного ИИ для создания и обработки текстового контента, предназначенная для маркетологов, копирайтеров и контент-менеджеро. Узнать больше про Нейротекстер
Chad AI — это система генеративного ИИ, предназначенная для создания и обработки текстовой информации, востребованная в деловой и аналитической сферах. Узнать больше про Chad AI
Robotext.io — это система генеративного ИИ для создания и обработки текстового контента, предназначенная для маркетологов, редакторов и контент-менеджеров. Узнать больше про Robotext.io
Модели генеративного искусственного интеллекта (МГИИ, англ. Generative Artificial Intelligence Models, ICG) — это класс алгоритмов и систем машинного обучения, способных создавать новый уникальный контент (тексты, изображения, аудио, видео) на основе анализа больших массивов данных, в отличие от традиционного ИИ они генерируют оригинальные материалы, а не просто анализируют существующие.
Интеллектуальное создание контента — это деятельность, основанная на применении алгоритмов и систем машинного обучения для генерации нового уникального контента: текстов, изображений, аудио- и видеоматериалов. В основе лежит анализ больших массивов данных и выявление закономерностей, которые затем используются для создания оригинальных материалов, а не просто для анализа существующих. Такая деятельность находит применение в различных сферах: медиа, маркетинг, образование, игровая индустрия и другие, позволяя автоматизировать процесс создания контента, сократить временные и финансовые затраты, повысить вариативность и объём производимых материалов.
Ключевые аспекты данного процесса:
Важную роль в интеллектуальном создании контента играют цифровые (программные) решения, которые обеспечивают необходимую вычислительную мощность, алгоритмы машинного обучения, интерфейсы для взаимодействия с пользователем и интеграции с другими системами. Без современных программных продуктов и инфраструктуры реализация такого рода деятельности была бы существенно затруднена или невозможна.
Модели генеративного искусственного интеллекта предназначены для создания нового уникального контента в различных форматах — текстах, изображениях, аудио- и видеоматериалах. Они анализируют большие массивы данных, выявляют закономерности и на их основе генерируют оригинальные материалы, которые могут быть использованы в самых разных сферах деятельности — от творчества и медиа до бизнес-процессов и научных исследований.
Функциональное предназначение МГИИ заключается в автоматизации процессов создания контента, повышении эффективности работы с информацией и расширении возможностей для инноваций. Они способны существенно сократить время и ресурсы, необходимые для разработки новых материалов, облегчить работу специалистов в областях, требующих креативного подхода, а также открыть новые перспективы для персонализации услуг, разработки интеллектуальных продуктов и улучшения пользовательского опыта.
Модели генеративного искусственного интеллекта в основном используют следующие группы пользователей:
На основе своего экспертного мнения Соваре рекомендует наиболее внимательно подходить к выбору решения. При выборе программного продукта из функционального класса моделей генеративного искусственного интеллекта (МГИИ) для решения деловых задач необходимо учитывать ряд ключевых факторов, которые определят пригодность и эффективность применения технологии в конкретной сфере деятельности. Прежде всего, следует оценить масштаб деятельности компании: для крупных корпораций могут быть актуальны МГИИ с высокой производительностью и возможностями масштабирования, в то время как для малого и среднего бизнеса приоритет может быть отдан более доступным по стоимости и простым в интеграции решениям. Также важно учитывать специфику отрасли и соответствующие требования к качеству и формату генерируемого контента, наличие необходимых интеграционных возможностей с существующими корпоративными информационными системами, уровень безопасности и конфиденциальности данных, соответствие законодательным и отраслевым стандартам (например, в финансовом секторе или здравоохранении действуют строгие требования к обработке и хранению данных).
Ключевые аспекты при принятии решения:
После анализа перечисленных факторов следует провести пилотное тестирование выбранного программного продукта на ограниченном объёме данных или в рамках отдельного бизнес-процесса. Это позволит оценить эффективность МГИИ в реальных условиях, выявить возможные проблемы с интеграцией и настройкой, а также определить необходимость доработок или выбора альтернативного решения. Особое внимание при этом стоит уделить качеству генерируемого контента и его соответствию ожиданиям бизнеса, а также оценить влияние МГИИ на существующие рабочие процессы и производительность сотрудников.
Модели генеративного искусственного интеллекта (МГИИ) открывают новые возможности для бизнеса и экономики, позволяя автоматизировать создание контента, ускорить разработку продуктов и оптимизировать рабочие процессы. Их применение приносит значительную выгоду в различных сферах деятельности. Среди основных преимуществ МГИИ можно выделить:
Автоматизация создания контента. МГИИ способны генерировать тексты, изображения, аудио и видео, что позволяет существенно сократить время и ресурсы, затрачиваемые на создание маркетингового и информационного контента.
Ускорение разработки продуктов. В сфере разработки программного обеспечения и дизайна МГИИ помогают быстро создавать прототипы, генерировать код и визуальные элементы, ускоряя процесс вывода продуктов на рынок.
Персонализация пользовательского опыта. МГИИ могут анализировать поведение пользователей и генерировать персонализированный контент, повышая вовлечённость и удовлетворённость клиентов, что особенно важно для онлайн-сервисов и электронной коммерции.
Оптимизация бизнес-процессов. Применение МГИИ для автоматизации рутинных задач, таких как составление отчётов, генерация документов и анализ данных, позволяет сотрудникам сосредоточиться на более сложных и стратегически важных задачах.
Расширение возможностей творчества и инноваций. МГИИ служат инструментом для креативных профессионалов, помогая генерировать новые идеи, концепции и решения, которые могут стать основой для инновационных продуктов и услуг.
Снижение затрат на контент-производство. За счёт автоматизации процессов создания контента МГИИ позволяют существенно снизить затраты на его производство, что особенно актуально для крупных медиакомпаний и корпораций.
Улучшение качества аналитических данных. МГИИ могут обрабатывать и анализировать большие объёмы данных, выявляя скрытые закономерности и тренды, что повышает точность прогнозов и качество принимаемых бизнес-решений.
Классификатор программных продуктов Соваре определяет конкретные функциональные критерии для систем. Для того, чтобы быть представленными на рынке Модели генеративного искусственного интеллекта, системы должны иметь следующие функциональные возможности:
По аналитическим данным Соваре, в 2025 году на рынке моделей генеративного искусственного интеллекта (МГИИ) можно ожидать усиления тенденций к интеграции МГИИ в корпоративные информационные системы, роста спроса на мультимодальные модели, способных работать с различными типами данных, дальнейшего развития методов обеспечения безопасности и этичности использования МГИИ, а также увеличения внимания к оптимизации вычислительных ресурсов и снижению затрат на обучение моделей.
Интеграция с корпоративными системами. МГИИ будут глубже интегрироваться в корпоративные информационные системы для автоматизации создания контента, оптимизации бизнес-процессов и улучшения взаимодействия с клиентами, что потребует разработки специализированных API и интерфейсов.
Развитие мультимодальных моделей. Модели, способные одновременно обрабатывать текст, изображения, аудио и видео, станут более совершенными, что расширит их применение в таких областях, как медиа, образование и развлечения.
Обеспечение безопасности данных. Усиление требований к защите персональных данных и интеллектуальной собственности приведёт к разработке новых методов шифрования и анонимизации информации, используемой для обучения МГИИ.
Этические аспекты использования МГИИ. Рост общественного внимания к этическим вопросам, связанным с генерацией контента, потребует создания стандартов и регулятивных механизмов для контроля качества и достоверности генерируемой информации.
Оптимизация вычислительных ресурсов. Развитие алгоритмов, снижающих требования к вычислительным мощностям и объёму памяти, сделает МГИИ более доступными для малого и среднего бизнеса.
Персонализация и адаптивность. МГИИ будут всё более ориентированы на создание персонализированного контента, учитывающего индивидуальные предпочтения пользователей, что потребует развития механизмов анализа пользовательского поведения и предпочтений.
Расширение сфер применения. МГИИ начнут активно использоваться в новых областях, таких как медицина, юриспруденция и наука, для генерации гипотез, разработки лечебных протоколов и анализа больших объёмов научной информации.
OpenAI

OpenAI Sora — это система генеративного ИИ, предназначенная для создания контента на основе текстовых запросов.
ИП Шуков Н. В.

RoboGPT — это комплексная платформа искусственного интеллекта для создания текстового и визуального контента с поддержкой более 10 языков и широким набором инструментов для бизнеса и маркетинга.
Сократика

Сократик — это ИИ-сервис для мгновенного создания презентаций, предлагающий готовые шаблоны, текст, изображения, графики. Система позволяет редактировать презентации онлайн с ИИ и скачивать их в форматах PPTX и PDF.
xAI

Grok— это генеративная языковая модель с ИИ-компонентами, способная анализировать данные в реальном времени и генерировать креативный контент с учётом контекста.
FRESHR

Arcads — это платформа на базе искусственного интеллекта для создания маркетинговых видео с помощью AI-аватаров, автоматической генерации сценариев и тестирования рекламных материалов в реальном времени.
OpenAI

GPT-4o — это мультимодальная модель искусственного интеллекта, способная обрабатывать текст, изображения и аудио в режиме реального времени, с поддержкой более 50 языков и возможностью голосового взаимодействия.
Imagen

Imagen — это система искусственного интеллекта для создания и обработки фотореалистичных изображений по текстовому описанию с высокой точностью детализации.
ИП Ларичев А. А.

ruGPT — это российская система искусственного интеллекта для работы с текстовой информацией на русском языке, основанная на технологии генеративных предобученных моделей.

Нейротекстер — это система генеративного ИИ для создания и обработки текстового контента, предназначенная для маркетологов, копирайтеров и контент-менеджеро.

Chad AI — это система генеративного ИИ, предназначенная для создания и обработки текстовой информации, востребованная в деловой и аналитической сферах.

Robotext.io — это система генеративного ИИ для создания и обработки текстового контента, предназначенная для маркетологов, редакторов и контент-менеджеров.
Модели генеративного искусственного интеллекта (МГИИ, англ. Generative Artificial Intelligence Models, ICG) — это класс алгоритмов и систем машинного обучения, способных создавать новый уникальный контент (тексты, изображения, аудио, видео) на основе анализа больших массивов данных, в отличие от традиционного ИИ они генерируют оригинальные материалы, а не просто анализируют существующие.
Интеллектуальное создание контента — это деятельность, основанная на применении алгоритмов и систем машинного обучения для генерации нового уникального контента: текстов, изображений, аудио- и видеоматериалов. В основе лежит анализ больших массивов данных и выявление закономерностей, которые затем используются для создания оригинальных материалов, а не просто для анализа существующих. Такая деятельность находит применение в различных сферах: медиа, маркетинг, образование, игровая индустрия и другие, позволяя автоматизировать процесс создания контента, сократить временные и финансовые затраты, повысить вариативность и объём производимых материалов.
Ключевые аспекты данного процесса:
Важную роль в интеллектуальном создании контента играют цифровые (программные) решения, которые обеспечивают необходимую вычислительную мощность, алгоритмы машинного обучения, интерфейсы для взаимодействия с пользователем и интеграции с другими системами. Без современных программных продуктов и инфраструктуры реализация такого рода деятельности была бы существенно затруднена или невозможна.
Модели генеративного искусственного интеллекта предназначены для создания нового уникального контента в различных форматах — текстах, изображениях, аудио- и видеоматериалах. Они анализируют большие массивы данных, выявляют закономерности и на их основе генерируют оригинальные материалы, которые могут быть использованы в самых разных сферах деятельности — от творчества и медиа до бизнес-процессов и научных исследований.
Функциональное предназначение МГИИ заключается в автоматизации процессов создания контента, повышении эффективности работы с информацией и расширении возможностей для инноваций. Они способны существенно сократить время и ресурсы, необходимые для разработки новых материалов, облегчить работу специалистов в областях, требующих креативного подхода, а также открыть новые перспективы для персонализации услуг, разработки интеллектуальных продуктов и улучшения пользовательского опыта.
Модели генеративного искусственного интеллекта в основном используют следующие группы пользователей:
На основе своего экспертного мнения Соваре рекомендует наиболее внимательно подходить к выбору решения. При выборе программного продукта из функционального класса моделей генеративного искусственного интеллекта (МГИИ) для решения деловых задач необходимо учитывать ряд ключевых факторов, которые определят пригодность и эффективность применения технологии в конкретной сфере деятельности. Прежде всего, следует оценить масштаб деятельности компании: для крупных корпораций могут быть актуальны МГИИ с высокой производительностью и возможностями масштабирования, в то время как для малого и среднего бизнеса приоритет может быть отдан более доступным по стоимости и простым в интеграции решениям. Также важно учитывать специфику отрасли и соответствующие требования к качеству и формату генерируемого контента, наличие необходимых интеграционных возможностей с существующими корпоративными информационными системами, уровень безопасности и конфиденциальности данных, соответствие законодательным и отраслевым стандартам (например, в финансовом секторе или здравоохранении действуют строгие требования к обработке и хранению данных).
Ключевые аспекты при принятии решения:
После анализа перечисленных факторов следует провести пилотное тестирование выбранного программного продукта на ограниченном объёме данных или в рамках отдельного бизнес-процесса. Это позволит оценить эффективность МГИИ в реальных условиях, выявить возможные проблемы с интеграцией и настройкой, а также определить необходимость доработок или выбора альтернативного решения. Особое внимание при этом стоит уделить качеству генерируемого контента и его соответствию ожиданиям бизнеса, а также оценить влияние МГИИ на существующие рабочие процессы и производительность сотрудников.
Модели генеративного искусственного интеллекта (МГИИ) открывают новые возможности для бизнеса и экономики, позволяя автоматизировать создание контента, ускорить разработку продуктов и оптимизировать рабочие процессы. Их применение приносит значительную выгоду в различных сферах деятельности. Среди основных преимуществ МГИИ можно выделить:
Автоматизация создания контента. МГИИ способны генерировать тексты, изображения, аудио и видео, что позволяет существенно сократить время и ресурсы, затрачиваемые на создание маркетингового и информационного контента.
Ускорение разработки продуктов. В сфере разработки программного обеспечения и дизайна МГИИ помогают быстро создавать прототипы, генерировать код и визуальные элементы, ускоряя процесс вывода продуктов на рынок.
Персонализация пользовательского опыта. МГИИ могут анализировать поведение пользователей и генерировать персонализированный контент, повышая вовлечённость и удовлетворённость клиентов, что особенно важно для онлайн-сервисов и электронной коммерции.
Оптимизация бизнес-процессов. Применение МГИИ для автоматизации рутинных задач, таких как составление отчётов, генерация документов и анализ данных, позволяет сотрудникам сосредоточиться на более сложных и стратегически важных задачах.
Расширение возможностей творчества и инноваций. МГИИ служат инструментом для креативных профессионалов, помогая генерировать новые идеи, концепции и решения, которые могут стать основой для инновационных продуктов и услуг.
Снижение затрат на контент-производство. За счёт автоматизации процессов создания контента МГИИ позволяют существенно снизить затраты на его производство, что особенно актуально для крупных медиакомпаний и корпораций.
Улучшение качества аналитических данных. МГИИ могут обрабатывать и анализировать большие объёмы данных, выявляя скрытые закономерности и тренды, что повышает точность прогнозов и качество принимаемых бизнес-решений.
Классификатор программных продуктов Соваре определяет конкретные функциональные критерии для систем. Для того, чтобы быть представленными на рынке Модели генеративного искусственного интеллекта, системы должны иметь следующие функциональные возможности:
По аналитическим данным Соваре, в 2025 году на рынке моделей генеративного искусственного интеллекта (МГИИ) можно ожидать усиления тенденций к интеграции МГИИ в корпоративные информационные системы, роста спроса на мультимодальные модели, способных работать с различными типами данных, дальнейшего развития методов обеспечения безопасности и этичности использования МГИИ, а также увеличения внимания к оптимизации вычислительных ресурсов и снижению затрат на обучение моделей.
Интеграция с корпоративными системами. МГИИ будут глубже интегрироваться в корпоративные информационные системы для автоматизации создания контента, оптимизации бизнес-процессов и улучшения взаимодействия с клиентами, что потребует разработки специализированных API и интерфейсов.
Развитие мультимодальных моделей. Модели, способные одновременно обрабатывать текст, изображения, аудио и видео, станут более совершенными, что расширит их применение в таких областях, как медиа, образование и развлечения.
Обеспечение безопасности данных. Усиление требований к защите персональных данных и интеллектуальной собственности приведёт к разработке новых методов шифрования и анонимизации информации, используемой для обучения МГИИ.
Этические аспекты использования МГИИ. Рост общественного внимания к этическим вопросам, связанным с генерацией контента, потребует создания стандартов и регулятивных механизмов для контроля качества и достоверности генерируемой информации.
Оптимизация вычислительных ресурсов. Развитие алгоритмов, снижающих требования к вычислительным мощностям и объёму памяти, сделает МГИИ более доступными для малого и среднего бизнеса.
Персонализация и адаптивность. МГИИ будут всё более ориентированы на создание персонализированного контента, учитывающего индивидуальные предпочтения пользователей, что потребует развития механизмов анализа пользовательского поведения и предпочтений.
Расширение сфер применения. МГИИ начнут активно использоваться в новых областях, таких как медицина, юриспруденция и наука, для генерации гипотез, разработки лечебных протоколов и анализа больших объёмов научной информации.