Модели генеративного искусственного интеллекта (МГИИ, англ. Generative Artificial Intelligence Models, ICG) — это класс алгоритмов и систем машинного обучения, способных создавать новый уникальный контент (тексты, изображения, аудио, видео) на основе анализа больших массивов данных, в отличие от традиционного ИИ они генерируют оригинальные материалы, а не просто анализируют существующие.
Классификатор программных продуктов Соваре определяет конкретные функциональные критерии для систем. Для того, чтобы быть представленными на рынке Модели генеративного искусственного интеллекта, системы должны иметь следующие функциональные возможности:

Addlly AI — это платформа генеративного ИИ для предприятий, автоматизирующая создание контента с учётом SEO, генерации изображений и хештегов. Узнать больше про Addlly AI
Модели генеративного искусственного интеллекта (МГИИ, англ. Generative Artificial Intelligence Models, ICG) — это класс алгоритмов и систем машинного обучения, способных создавать новый уникальный контент (тексты, изображения, аудио, видео) на основе анализа больших массивов данных, в отличие от традиционного ИИ они генерируют оригинальные материалы, а не просто анализируют существующие.
Интеллектуальное создание контента — это деятельность, основанная на применении алгоритмов и систем машинного обучения для генерации нового уникального контента: текстов, изображений, аудио- и видеоматериалов. В основе лежит анализ больших массивов данных и выявление закономерностей, которые затем используются для создания оригинальных материалов, а не просто для анализа существующих. Такая деятельность находит применение в различных сферах: медиа, маркетинг, образование, игровая индустрия и другие, позволяя автоматизировать процесс создания контента, сократить временные и финансовые затраты, повысить вариативность и объём производимых материалов.
Ключевые аспекты данного процесса:
Важную роль в интеллектуальном создании контента играют цифровые (программные) решения, которые обеспечивают необходимую вычислительную мощность, алгоритмы машинного обучения, интерфейсы для взаимодействия с пользователем и интеграции с другими системами. Без современных программных продуктов и инфраструктуры реализация такого рода деятельности была бы существенно затруднена или невозможна.
Модели генеративного искусственного интеллекта предназначены для создания нового уникального контента в различных форматах — текстах, изображениях, аудио- и видеоматериалах. Они анализируют большие массивы данных, выявляют закономерности и на их основе генерируют оригинальные материалы, которые могут быть использованы в самых разных сферах деятельности — от творчества и медиа до бизнес-процессов и научных исследований.
Функциональное предназначение МГИИ заключается в автоматизации процессов создания контента, повышении эффективности работы с информацией и расширении возможностей для инноваций. Они способны существенно сократить время и ресурсы, необходимые для разработки новых материалов, облегчить работу специалистов в областях, требующих креативного подхода, а также открыть новые перспективы для персонализации услуг, разработки интеллектуальных продуктов и улучшения пользовательского опыта.
Модели генеративного искусственного интеллекта в основном используют следующие группы пользователей:
На основе своего экспертного мнения Соваре рекомендует наиболее внимательно подходить к выбору решения. При выборе программного продукта из функционального класса моделей генеративного искусственного интеллекта (МГИИ) для решения деловых задач необходимо учитывать ряд ключевых факторов, которые определят пригодность и эффективность применения технологии в конкретной сфере деятельности. Прежде всего, следует оценить масштаб деятельности компании: для крупных корпораций могут быть актуальны МГИИ с высокой производительностью и возможностями масштабирования, в то время как для малого и среднего бизнеса приоритет может быть отдан более доступным по стоимости и простым в интеграции решениям. Также важно учитывать специфику отрасли и соответствующие требования к качеству и формату генерируемого контента, наличие необходимых интеграционных возможностей с существующими корпоративными информационными системами, уровень безопасности и конфиденциальности данных, соответствие законодательным и отраслевым стандартам (например, в финансовом секторе или здравоохранении действуют строгие требования к обработке и хранению данных).
Ключевые аспекты при принятии решения:
После анализа перечисленных факторов следует провести пилотное тестирование выбранного программного продукта на ограниченном объёме данных или в рамках отдельного бизнес-процесса. Это позволит оценить эффективность МГИИ в реальных условиях, выявить возможные проблемы с интеграцией и настройкой, а также определить необходимость доработок или выбора альтернативного решения. Особое внимание при этом стоит уделить качеству генерируемого контента и его соответствию ожиданиям бизнеса, а также оценить влияние МГИИ на существующие рабочие процессы и производительность сотрудников.
Модели генеративного искусственного интеллекта (МГИИ) открывают новые возможности для бизнеса и экономики, позволяя автоматизировать создание контента, ускорить разработку продуктов и оптимизировать рабочие процессы. Их применение приносит значительную выгоду в различных сферах деятельности. Среди основных преимуществ МГИИ можно выделить:
Автоматизация создания контента. МГИИ способны генерировать тексты, изображения, аудио и видео, что позволяет существенно сократить время и ресурсы, затрачиваемые на создание маркетингового и информационного контента.
Ускорение разработки продуктов. В сфере разработки программного обеспечения и дизайна МГИИ помогают быстро создавать прототипы, генерировать код и визуальные элементы, ускоряя процесс вывода продуктов на рынок.
Персонализация пользовательского опыта. МГИИ могут анализировать поведение пользователей и генерировать персонализированный контент, повышая вовлечённость и удовлетворённость клиентов, что особенно важно для онлайн-сервисов и электронной коммерции.
Оптимизация бизнес-процессов. Применение МГИИ для автоматизации рутинных задач, таких как составление отчётов, генерация документов и анализ данных, позволяет сотрудникам сосредоточиться на более сложных и стратегически важных задачах.
Расширение возможностей творчества и инноваций. МГИИ служат инструментом для креативных профессионалов, помогая генерировать новые идеи, концепции и решения, которые могут стать основой для инновационных продуктов и услуг.
Снижение затрат на контент-производство. За счёт автоматизации процессов создания контента МГИИ позволяют существенно снизить затраты на его производство, что особенно актуально для крупных медиакомпаний и корпораций.
Улучшение качества аналитических данных. МГИИ могут обрабатывать и анализировать большие объёмы данных, выявляя скрытые закономерности и тренды, что повышает точность прогнозов и качество принимаемых бизнес-решений.
Классификатор программных продуктов Соваре определяет конкретные функциональные критерии для систем. Для того, чтобы быть представленными на рынке Модели генеративного искусственного интеллекта, системы должны иметь следующие функциональные возможности:
По экспертной оценке Soware, в 2026 году на рынке моделей генеративного искусственного интеллекта (МГИИ) продолжат развиваться тенденции, связанные с углублением интеграции в корпоративные системы, совершенствованием мультимодальных моделей, усилением мер безопасности и этического регулирования, оптимизацией вычислительных ресурсов, а также расширением сфер применения и повышением персонализации генерируемого контента.
В целом Модели генеративного искусственного интеллекта в 2026 году будут развиваться с акцентом на следующие тренды:
Интеграция с корпоративными системами. МГИИ будут всё более тесно интегрироваться с ERP, CRM и другими корпоративными системами для автоматизации генерации отчётов, документов и улучшения клиентского сервиса, что потребует разработки новых API и адаптивных интерфейсов.
Развитие мультимодальных моделей. Совершенствование алгоритмов, способных одновременно обрабатывать различные типы данных (текст, изображения, аудио, видео), позволит расширить применение МГИИ в креативных индустриях, образовании и научных исследованиях.
Обеспечение безопасности данных. Разработка продвинутых методов шифрования и анонимизации данных, используемых для обучения МГИИ, станет приоритетом в связи с ужесточением законодательства в области защиты персональных данных и интеллектуальной собственности.
Этические аспекты использования МГИИ. Формирование международных и национальных стандартов этичного использования МГИИ, включая механизмы проверки достоверности генерируемой информации и предотвращения распространения дезинформации.
Оптимизация вычислительных ресурсов. Создание более эффективных алгоритмов, снижающих требования к вычислительным мощностям и объёму памяти, сделает МГИИ доступнее для компаний малого и среднего бизнеса, расширив рынок применения технологий.
Персонализация и адаптивность. Развитие механизмов анализа пользовательского поведения и предпочтений позволит МГИИ генерировать контент, максимально учитывающий индивидуальные нужды и интересы пользователей, что повысит лояльность и вовлечённость аудитории.
Расширение сфер применения. Активное внедрение МГИИ в такие области, как медицина (для генерации лечебных протоколов и анализа медицинских данных), юриспруденция (для подготовки юридических документов и анализа прецедентов) и наука (для генерации гипотез и анализа больших данных).
Addlly AI

Addlly AI — это платформа генеративного ИИ для предприятий, автоматизирующая создание контента с учётом SEO, генерации изображений и хештегов.
Модели генеративного искусственного интеллекта (МГИИ, англ. Generative Artificial Intelligence Models, ICG) — это класс алгоритмов и систем машинного обучения, способных создавать новый уникальный контент (тексты, изображения, аудио, видео) на основе анализа больших массивов данных, в отличие от традиционного ИИ они генерируют оригинальные материалы, а не просто анализируют существующие.
Интеллектуальное создание контента — это деятельность, основанная на применении алгоритмов и систем машинного обучения для генерации нового уникального контента: текстов, изображений, аудио- и видеоматериалов. В основе лежит анализ больших массивов данных и выявление закономерностей, которые затем используются для создания оригинальных материалов, а не просто для анализа существующих. Такая деятельность находит применение в различных сферах: медиа, маркетинг, образование, игровая индустрия и другие, позволяя автоматизировать процесс создания контента, сократить временные и финансовые затраты, повысить вариативность и объём производимых материалов.
Ключевые аспекты данного процесса:
Важную роль в интеллектуальном создании контента играют цифровые (программные) решения, которые обеспечивают необходимую вычислительную мощность, алгоритмы машинного обучения, интерфейсы для взаимодействия с пользователем и интеграции с другими системами. Без современных программных продуктов и инфраструктуры реализация такого рода деятельности была бы существенно затруднена или невозможна.
Модели генеративного искусственного интеллекта предназначены для создания нового уникального контента в различных форматах — текстах, изображениях, аудио- и видеоматериалах. Они анализируют большие массивы данных, выявляют закономерности и на их основе генерируют оригинальные материалы, которые могут быть использованы в самых разных сферах деятельности — от творчества и медиа до бизнес-процессов и научных исследований.
Функциональное предназначение МГИИ заключается в автоматизации процессов создания контента, повышении эффективности работы с информацией и расширении возможностей для инноваций. Они способны существенно сократить время и ресурсы, необходимые для разработки новых материалов, облегчить работу специалистов в областях, требующих креативного подхода, а также открыть новые перспективы для персонализации услуг, разработки интеллектуальных продуктов и улучшения пользовательского опыта.
Модели генеративного искусственного интеллекта в основном используют следующие группы пользователей:
На основе своего экспертного мнения Соваре рекомендует наиболее внимательно подходить к выбору решения. При выборе программного продукта из функционального класса моделей генеративного искусственного интеллекта (МГИИ) для решения деловых задач необходимо учитывать ряд ключевых факторов, которые определят пригодность и эффективность применения технологии в конкретной сфере деятельности. Прежде всего, следует оценить масштаб деятельности компании: для крупных корпораций могут быть актуальны МГИИ с высокой производительностью и возможностями масштабирования, в то время как для малого и среднего бизнеса приоритет может быть отдан более доступным по стоимости и простым в интеграции решениям. Также важно учитывать специфику отрасли и соответствующие требования к качеству и формату генерируемого контента, наличие необходимых интеграционных возможностей с существующими корпоративными информационными системами, уровень безопасности и конфиденциальности данных, соответствие законодательным и отраслевым стандартам (например, в финансовом секторе или здравоохранении действуют строгие требования к обработке и хранению данных).
Ключевые аспекты при принятии решения:
После анализа перечисленных факторов следует провести пилотное тестирование выбранного программного продукта на ограниченном объёме данных или в рамках отдельного бизнес-процесса. Это позволит оценить эффективность МГИИ в реальных условиях, выявить возможные проблемы с интеграцией и настройкой, а также определить необходимость доработок или выбора альтернативного решения. Особое внимание при этом стоит уделить качеству генерируемого контента и его соответствию ожиданиям бизнеса, а также оценить влияние МГИИ на существующие рабочие процессы и производительность сотрудников.
Модели генеративного искусственного интеллекта (МГИИ) открывают новые возможности для бизнеса и экономики, позволяя автоматизировать создание контента, ускорить разработку продуктов и оптимизировать рабочие процессы. Их применение приносит значительную выгоду в различных сферах деятельности. Среди основных преимуществ МГИИ можно выделить:
Автоматизация создания контента. МГИИ способны генерировать тексты, изображения, аудио и видео, что позволяет существенно сократить время и ресурсы, затрачиваемые на создание маркетингового и информационного контента.
Ускорение разработки продуктов. В сфере разработки программного обеспечения и дизайна МГИИ помогают быстро создавать прототипы, генерировать код и визуальные элементы, ускоряя процесс вывода продуктов на рынок.
Персонализация пользовательского опыта. МГИИ могут анализировать поведение пользователей и генерировать персонализированный контент, повышая вовлечённость и удовлетворённость клиентов, что особенно важно для онлайн-сервисов и электронной коммерции.
Оптимизация бизнес-процессов. Применение МГИИ для автоматизации рутинных задач, таких как составление отчётов, генерация документов и анализ данных, позволяет сотрудникам сосредоточиться на более сложных и стратегически важных задачах.
Расширение возможностей творчества и инноваций. МГИИ служат инструментом для креативных профессионалов, помогая генерировать новые идеи, концепции и решения, которые могут стать основой для инновационных продуктов и услуг.
Снижение затрат на контент-производство. За счёт автоматизации процессов создания контента МГИИ позволяют существенно снизить затраты на его производство, что особенно актуально для крупных медиакомпаний и корпораций.
Улучшение качества аналитических данных. МГИИ могут обрабатывать и анализировать большие объёмы данных, выявляя скрытые закономерности и тренды, что повышает точность прогнозов и качество принимаемых бизнес-решений.
Классификатор программных продуктов Соваре определяет конкретные функциональные критерии для систем. Для того, чтобы быть представленными на рынке Модели генеративного искусственного интеллекта, системы должны иметь следующие функциональные возможности:
По экспертной оценке Soware, в 2026 году на рынке моделей генеративного искусственного интеллекта (МГИИ) продолжат развиваться тенденции, связанные с углублением интеграции в корпоративные системы, совершенствованием мультимодальных моделей, усилением мер безопасности и этического регулирования, оптимизацией вычислительных ресурсов, а также расширением сфер применения и повышением персонализации генерируемого контента.
В целом Модели генеративного искусственного интеллекта в 2026 году будут развиваться с акцентом на следующие тренды:
Интеграция с корпоративными системами. МГИИ будут всё более тесно интегрироваться с ERP, CRM и другими корпоративными системами для автоматизации генерации отчётов, документов и улучшения клиентского сервиса, что потребует разработки новых API и адаптивных интерфейсов.
Развитие мультимодальных моделей. Совершенствование алгоритмов, способных одновременно обрабатывать различные типы данных (текст, изображения, аудио, видео), позволит расширить применение МГИИ в креативных индустриях, образовании и научных исследованиях.
Обеспечение безопасности данных. Разработка продвинутых методов шифрования и анонимизации данных, используемых для обучения МГИИ, станет приоритетом в связи с ужесточением законодательства в области защиты персональных данных и интеллектуальной собственности.
Этические аспекты использования МГИИ. Формирование международных и национальных стандартов этичного использования МГИИ, включая механизмы проверки достоверности генерируемой информации и предотвращения распространения дезинформации.
Оптимизация вычислительных ресурсов. Создание более эффективных алгоритмов, снижающих требования к вычислительным мощностям и объёму памяти, сделает МГИИ доступнее для компаний малого и среднего бизнеса, расширив рынок применения технологий.
Персонализация и адаптивность. Развитие механизмов анализа пользовательского поведения и предпочтений позволит МГИИ генерировать контент, максимально учитывающий индивидуальные нужды и интересы пользователей, что повысит лояльность и вовлечённость аудитории.
Расширение сфер применения. Активное внедрение МГИИ в такие области, как медицина (для генерации лечебных протоколов и анализа медицинских данных), юриспруденция (для подготовки юридических документов и анализа прецедентов) и наука (для генерации гипотез и анализа больших данных).