Логотип Soware
Логотип Soware

Системы потоковой аналитики (СПА) c функцией Отчётность и аналитика

Системы потоковой аналитики (СПА, англ. Stream Analytics Systems, SAS) отслеживают и анализируют поток высокочастотно меняющихся данных в режиме реального времени. Системы позволяют, используя доступные для анализа большие данные, контролировать качество, вывлять аномалии в рабочих процессах и извлекать иную пользу из рабочей информации.

Для включения в категорию Систем потоковой аналитики, программный продукт должен:

  • Отслеживать события, связанные с обменом информацией, в режиме реального времени;
  • Обладать настраиваемыми инструментами аналитики в режиме РВ;
  • Оповещать пользователей о выявлении отслеживаемых событий;
  • Предоставлять действенную аналитическую информацию в удобном для пользователя виде.

Сравнение Системы потоковой аналитики (СПА)

Выбрать по критериям:

Категории
Подходит для
Функции
Тарификация
Развёртывание
Графический интерфейс
Поддержка языков
Сортировать:
Систем: 0

Руководство по покупке Системы потоковой аналитики

1. Что такое Системы потоковой аналитики

Системы потоковой аналитики (СПА, англ. Stream Analytics Systems, SAS) отслеживают и анализируют поток высокочастотно меняющихся данных в режиме реального времени. Системы позволяют, используя доступные для анализа большие данные, контролировать качество, вывлять аномалии в рабочих процессах и извлекать иную пользу из рабочей информации.

2. Зачем бизнесу Системы потоковой аналитики

Потоковая аналитика - это метод обработки и анализа непрерывно поступающих данных (потоков данных), в режиме реального времени. Потоковая аналитика позволяет анализировать миллионы событий в секунду, выявлять тренды и корреляции, определять аномалии и принимать решения на основе полученной информации.

Процесс потоковой аналитики может использоваться в различных сферах, включая интернет-маркетинг, финансы, здравоохранение, энергетику, транспорт.

Потоковая аналитика играет важную роль в деятельности компаний, которые работают в режиме реального времени. Она используется для мониторинга и анализа данных, поступающих в компанию в режиме реального времени, таких как веб-логи, транзакции, события в социальных сетях и иных целях.

Ниже приведены некоторые примеры использования потоковой аналитики в компаниях:

  • Мониторинг веб-сайта: компания может использовать потоковую аналитику для мониторинга потока посетителей на своем сайте и определения технических проблем, которые могут отрицательно сказаться на пользовательском опыте.

  • Анализ покупок: компания может использовать потоковую аналитику для мониторинга покупок и незамедлительного определения изменений в поведении покупателей ради обеспечения быстрого реагирования компании.

  • Обработка данных интернета вещей (ИВ, IoT): компания может использовать потоковую аналитику для обработки потоков данных от устройств ИВ и получения ценной информации от запланированных задач, внезапных аварий и других проблем.

  • Анализ социальных сетей: компания может использовать потоковую аналитику для мониторинга социальных сетей и определения тенденций в поведении и мнении пользователей.

В целом, потоковая аналитика позволяет компаниям получать более быстрый и точный анализ данных, который помогает им принимать более обоснованные решения и реализовывать больший потенциал своих данных.

3. Назначение и цели использования Системы потоковой аналитики

Инструменты потоковой аналитики позволяют пользователям анализировать непрервыный поток данных, поступающий из разнообразных источников. Возможности таких систем позволяют пользователям анализировать как исторические события, так и ситуацию в текущий момент в рассматриваемой прикладной области, например для анализа операционных КПЭ (KPI).

Системы потоковой аналитики не редко используются для анализа следующих сведений:

  • Озёра больших разнородных рабочих данных и BI-хранилища,
  • Потоковые данные реального времени,
  • Неверифицированные данные клиентов,
  • Данные моделей и скоринга,
  • Операционная и финансовая отчётность,
  • Данные технологических процессов, умных устройств и датчиков интернета вещей (IoT).

Системы потоковой аналитики содержат компоненты визуализации данных для удобного представления результатов аналитики, функции сравнительного анализа и аналитики больших данных. Наиболее продвинутые системы потоковой аналитики применяют системы выявления событий на базе искусственных нейронных сетей нового поколения.

Существует некоторое пересечение между потоковой аналитикой и инструментами анализа больших данных, но инструменты анализа больших данных не обязательно используются специально для предоставления информации в режиме реального времени.

4. Обзор основных функций и возможностей Системы потоковой аналитики

Администрирование
Возможность администрирования позволяет осуществлять настройку и управление функциональностью системы, а также управление учётными записями и правами доступа к системе.
Импорт/экспорт данных
Возможность импорта и/или экспорта данных в продукте позволяет загрузить данные из наиболее популярных файловых форматов или выгрузить рабочие данные в файл для дальнейшего использования в другом ПО.
Многопользовательский доступ
Возможность многопользовательской доступа в программную систему обеспечивает одновременную работу нескольких пользователей на одной базе данных под собственными учётными записями. Пользователи в этом случае могут иметь отличающиеся права доступа к данным и функциям программного обеспечения.
Наличие API
Часто при использовании современного делового программного обеспечения возникает потребность автоматической передачи данных из одного ПО в другое. Например, может быть полезно автоматически передавать данные из Системы управления взаимоотношениями с клиентами (CRM) в Систему бухгалтерского учёта (БУ). Для обеспечения такого и подобных сопряжений программные системы оснащаются специальными Прикладными программными интерфейсами (англ. API, Application Programming Interface). С помощью таких API любые компетентные программисты смогут связать два программных продукта между собой для автоматического обмена информацией.
Отчётность и аналитика
Наличие у продукта функций подготовки отчётности и/или аналитики позволяют получать систематизированные и визуализированные данные из системы для последующего анализа и принятия решений на основе данных.

5. Выгоды, преимущества и польза от применения Системы потоковой аналитики

Компании используют потоковую аналитику, чтобы лучше понимать, какие данные извлекают пользователи, и отслеживать рабочие процессы в контрольных точках. Пользователи могут анализировать рабочие данные, собираемые корпоративной системой сбора и объединения данных (ETL) из различных источников, или прикладные данные, передаваемые от устройств типа конечных датчиков или оборудования интернета вещей (IoT).

6. Отличительные черты Системы потоковой аналитики

Для включения в категорию Систем потоковой аналитики, программный продукт должен:

  • Отслеживать события, связанные с обменом информацией, в режиме реального времени;
  • Обладать настраиваемыми инструментами аналитики в режиме РВ;
  • Оповещать пользователей о выявлении отслеживаемых событий;
  • Предоставлять действенную аналитическую информацию в удобном для пользователя виде.

Сравнение Системы потоковой аналитики (СПА)

Систем: 0

Руководство по покупке Системы потоковой аналитики

Что такое Системы потоковой аналитики

Системы потоковой аналитики (СПА, англ. Stream Analytics Systems, SAS) отслеживают и анализируют поток высокочастотно меняющихся данных в режиме реального времени. Системы позволяют, используя доступные для анализа большие данные, контролировать качество, вывлять аномалии в рабочих процессах и извлекать иную пользу из рабочей информации.

Зачем бизнесу Системы потоковой аналитики

Потоковая аналитика - это метод обработки и анализа непрерывно поступающих данных (потоков данных), в режиме реального времени. Потоковая аналитика позволяет анализировать миллионы событий в секунду, выявлять тренды и корреляции, определять аномалии и принимать решения на основе полученной информации.

Процесс потоковой аналитики может использоваться в различных сферах, включая интернет-маркетинг, финансы, здравоохранение, энергетику, транспорт.

Потоковая аналитика играет важную роль в деятельности компаний, которые работают в режиме реального времени. Она используется для мониторинга и анализа данных, поступающих в компанию в режиме реального времени, таких как веб-логи, транзакции, события в социальных сетях и иных целях.

Ниже приведены некоторые примеры использования потоковой аналитики в компаниях:

  • Мониторинг веб-сайта: компания может использовать потоковую аналитику для мониторинга потока посетителей на своем сайте и определения технических проблем, которые могут отрицательно сказаться на пользовательском опыте.

  • Анализ покупок: компания может использовать потоковую аналитику для мониторинга покупок и незамедлительного определения изменений в поведении покупателей ради обеспечения быстрого реагирования компании.

  • Обработка данных интернета вещей (ИВ, IoT): компания может использовать потоковую аналитику для обработки потоков данных от устройств ИВ и получения ценной информации от запланированных задач, внезапных аварий и других проблем.

  • Анализ социальных сетей: компания может использовать потоковую аналитику для мониторинга социальных сетей и определения тенденций в поведении и мнении пользователей.

В целом, потоковая аналитика позволяет компаниям получать более быстрый и точный анализ данных, который помогает им принимать более обоснованные решения и реализовывать больший потенциал своих данных.

Назначение и цели использования Системы потоковой аналитики

Инструменты потоковой аналитики позволяют пользователям анализировать непрервыный поток данных, поступающий из разнообразных источников. Возможности таких систем позволяют пользователям анализировать как исторические события, так и ситуацию в текущий момент в рассматриваемой прикладной области, например для анализа операционных КПЭ (KPI).

Системы потоковой аналитики не редко используются для анализа следующих сведений:

  • Озёра больших разнородных рабочих данных и BI-хранилища,
  • Потоковые данные реального времени,
  • Неверифицированные данные клиентов,
  • Данные моделей и скоринга,
  • Операционная и финансовая отчётность,
  • Данные технологических процессов, умных устройств и датчиков интернета вещей (IoT).

Системы потоковой аналитики содержат компоненты визуализации данных для удобного представления результатов аналитики, функции сравнительного анализа и аналитики больших данных. Наиболее продвинутые системы потоковой аналитики применяют системы выявления событий на базе искусственных нейронных сетей нового поколения.

Существует некоторое пересечение между потоковой аналитикой и инструментами анализа больших данных, но инструменты анализа больших данных не обязательно используются специально для предоставления информации в режиме реального времени.

Обзор основных функций и возможностей Системы потоковой аналитики
Администрирование
Возможность администрирования позволяет осуществлять настройку и управление функциональностью системы, а также управление учётными записями и правами доступа к системе.
Импорт/экспорт данных
Возможность импорта и/или экспорта данных в продукте позволяет загрузить данные из наиболее популярных файловых форматов или выгрузить рабочие данные в файл для дальнейшего использования в другом ПО.
Многопользовательский доступ
Возможность многопользовательской доступа в программную систему обеспечивает одновременную работу нескольких пользователей на одной базе данных под собственными учётными записями. Пользователи в этом случае могут иметь отличающиеся права доступа к данным и функциям программного обеспечения.
Наличие API
Часто при использовании современного делового программного обеспечения возникает потребность автоматической передачи данных из одного ПО в другое. Например, может быть полезно автоматически передавать данные из Системы управления взаимоотношениями с клиентами (CRM) в Систему бухгалтерского учёта (БУ). Для обеспечения такого и подобных сопряжений программные системы оснащаются специальными Прикладными программными интерфейсами (англ. API, Application Programming Interface). С помощью таких API любые компетентные программисты смогут связать два программных продукта между собой для автоматического обмена информацией.
Отчётность и аналитика
Наличие у продукта функций подготовки отчётности и/или аналитики позволяют получать систематизированные и визуализированные данные из системы для последующего анализа и принятия решений на основе данных.
Выгоды, преимущества и польза от применения Системы потоковой аналитики

Компании используют потоковую аналитику, чтобы лучше понимать, какие данные извлекают пользователи, и отслеживать рабочие процессы в контрольных точках. Пользователи могут анализировать рабочие данные, собираемые корпоративной системой сбора и объединения данных (ETL) из различных источников, или прикладные данные, передаваемые от устройств типа конечных датчиков или оборудования интернета вещей (IoT).

Отличительные черты Системы потоковой аналитики

Для включения в категорию Систем потоковой аналитики, программный продукт должен:

  • Отслеживать события, связанные с обменом информацией, в режиме реального времени;
  • Обладать настраиваемыми инструментами аналитики в режиме РВ;
  • Оповещать пользователей о выявлении отслеживаемых событий;
  • Предоставлять действенную аналитическую информацию в удобном для пользователя виде.
Soware логотип
Soware является основным источником сведений о прикладном программном обеспечении для предприятий. Используя наш обширный каталог категорий и программных продуктов, лица, принимающие решения в России и странах СНГ получают бесплатный инструмент для выбора и сравнения систем от разных разработчиков
Проект "СОВАРЕ" Санкт-Петербург, Россия info@soware.ru
2023 Soware.Ru - Умный выбор систем для бизнеса