Программные системы аналитики больших данных (САБОД, англ. Big data analytics, BDA) помогают аналитикам данных и ведущим профильным специалистам анализировать тенденции, закономерности и аномалии прикладных данных и строить практически полезные визуализации.
Чтобы претендовать на включение в категорию Систем аналитики больших данных, программный продукт должен:
KNIME Analytics Platform – это программная платформа анализа, интеграции данных и подготовки отчётности с открытым исходным кодом. Узнать больше про KNIME Analytics Platform
Платформа Elasticsearch – это программное обеспечение с открытым исходным кодом, предназначенное для поиска, сбора, анализа и хранения текстовых данных с использованием интеллектуальных алгоритмов. Узнать больше про Elasticsearch
Statsbot – это онлайн-сервис, обеспечивающий быструю аналитику для бизнеса. Система извлекает данные из различных систем-источников и предоставляет их в полном и удобном для анализа виде без затрат на программирование. Узнать больше про Statsbot
Программные системы аналитики больших данных (САБОД, англ. Big data analytics, BDA) помогают аналитикам данных и ведущим профильным специалистам анализировать тенденции, закономерности и аномалии прикладных данных и строить практически полезные визуализации.
Аналитика больших данных - это процесс сбора, обработки, анализа и интерпретации большого объёма данных, с целью выделения важных показателей и трендов, определения потенциальных проблем и возможностей для бизнеса.
Данный процесс используется для определения потребностей клиентов, поведения рынка, прогнозирования продаж и оценки эффективности маркетинговых кампаний. Бизнес-процесс аналитики больших данных помогает компаниям принимать обоснованные и эффективные решения, увеличивая свою конкурентоспособность и доходность.
Решения для анализа больших данных могут предлагать функции искусственного интеллекта (ИИ, AI), такие как обработка естественного языка (ОЕЯ, NLP), как вспомогательный интерфейс помощи пользователям без навыков программирования. Эти продукты похожи на платформы бизнес-аналитики в том смысле, что они позволяют пользователям оперировать сложными данными. Результаты анализа могут быть далее представлены в понятных визуализациях, включающих разрозненные структурированные и неструктурированные данные.
Применение системы аналитики больших данных позволяет получать множество выгод, включая:
Улучшение операционных процессов и повышение эффективности бизнеса через автоматизацию рутинных задач, улучшение качества принимаемых решений и оптимизацию затрат.
Определение новых возможностей для бизнеса путем выявления и анализа трендов, паттернов и лояльности клиентов.
Улучшение качества продуктов и услуг через анализ обратной связи, лояльности клиентов и других факторов.
Более точное прогнозирование тенденций, событий и рисков, что позволяет более точно планировать бизнес-процессы и уменьшить вероятность ошибок и потерь.
Ускорение развития бизнеса и обеспечение конкурентоспособности путем оптимизации затрат и повышения эффективности рекламных и маркетинговых кампаний.
Совершенствование управления рисками через анализ статистических данных и прогнозы на основе исторических данных.
Кроме того, система аналитики больших данных может быть полезной для научных исследований, медицинской диагностики, анализа социально-экономических процессов и других областей.
Чтобы претендовать на включение в категорию Систем аналитики больших данных, программный продукт должен:
KNIME
KNIME Analytics Platform – это программная платформа анализа, интеграции данных и подготовки отчётности с открытым исходным кодом.
Elastic NV
Платформа Elasticsearch – это программное обеспечение с открытым исходным кодом, предназначенное для поиска, сбора, анализа и хранения текстовых данных с использованием интеллектуальных алгоритмов.
Statsbot
Statsbot – это онлайн-сервис, обеспечивающий быструю аналитику для бизнеса. Система извлекает данные из различных систем-источников и предоставляет их в полном и удобном для анализа виде без затрат на программирование.
Программные системы аналитики больших данных (САБОД, англ. Big data analytics, BDA) помогают аналитикам данных и ведущим профильным специалистам анализировать тенденции, закономерности и аномалии прикладных данных и строить практически полезные визуализации.
Аналитика больших данных - это процесс сбора, обработки, анализа и интерпретации большого объёма данных, с целью выделения важных показателей и трендов, определения потенциальных проблем и возможностей для бизнеса.
Данный процесс используется для определения потребностей клиентов, поведения рынка, прогнозирования продаж и оценки эффективности маркетинговых кампаний. Бизнес-процесс аналитики больших данных помогает компаниям принимать обоснованные и эффективные решения, увеличивая свою конкурентоспособность и доходность.
Решения для анализа больших данных могут предлагать функции искусственного интеллекта (ИИ, AI), такие как обработка естественного языка (ОЕЯ, NLP), как вспомогательный интерфейс помощи пользователям без навыков программирования. Эти продукты похожи на платформы бизнес-аналитики в том смысле, что они позволяют пользователям оперировать сложными данными. Результаты анализа могут быть далее представлены в понятных визуализациях, включающих разрозненные структурированные и неструктурированные данные.
Применение системы аналитики больших данных позволяет получать множество выгод, включая:
Улучшение операционных процессов и повышение эффективности бизнеса через автоматизацию рутинных задач, улучшение качества принимаемых решений и оптимизацию затрат.
Определение новых возможностей для бизнеса путем выявления и анализа трендов, паттернов и лояльности клиентов.
Улучшение качества продуктов и услуг через анализ обратной связи, лояльности клиентов и других факторов.
Более точное прогнозирование тенденций, событий и рисков, что позволяет более точно планировать бизнес-процессы и уменьшить вероятность ошибок и потерь.
Ускорение развития бизнеса и обеспечение конкурентоспособности путем оптимизации затрат и повышения эффективности рекламных и маркетинговых кампаний.
Совершенствование управления рисками через анализ статистических данных и прогнозы на основе исторических данных.
Кроме того, система аналитики больших данных может быть полезной для научных исследований, медицинской диагностики, анализа социально-экономических процессов и других областей.
Чтобы претендовать на включение в категорию Систем аналитики больших данных, программный продукт должен: