Программные сервисы и Системы машинного обучения (СМО, англ. Machine learning, ML) позволяют формировать прогнозы и автоматически принимать деловые решения.
Для включения в категорию Систем машинного обучения данное программное обеспечение должно удовлетворять следующим критериям:
Цифровые технологические платформы (ЦТП)
Платформы искусственного интеллекта (AI)
Системы машинного обучения (ML)
Системы обработки естественного языка (NLP)
Системы оптического распознавания символов (OCR)
Системы компьютерного зрения (CV)
Системы распознавания речи (СРР)
Программное обеспечение B3 – это корпоративное программное решение, объединяющее системы и сотрудников с бизнес-информацией, в которой они нуждаются, и прикладными знаниями, которые необходимы для бизнес-анализа. Узнать больше про B3
Plotly Dash – это аналитический программный фреймворк Python для быстрого создания информационных панелей (дашбордов) для веб-браузера с использованием технологий ИАД, МО и ИИ. Узнать больше про Plotly Dash
Dataiku Data Science Studio – это система анализа данных для различных компаний, независимо от их опыта, отрасли или размера, стремящихся создать стратегические преимущества бизнеса, основанные на данных.. Узнать больше про Dataiku DSS
F5 Platform – это платформа построения и исполнения бизнес-приложений по анализу данных с использованием алгоритмов машинного обучения. Система направлена на ускорение разработки прикладных приложений, повышение эффективности и культуры бизнес-процессов организации. Узнать больше про F5 Platform
KNIME Analytics Platform – это программная платформа анализа, интеграции данных и подготовки отчётности с открытым исходным кодом. Узнать больше про KNIME Analytics Platform
RapidMiner – это платформа анализа данных, позволяющая развёртывать прогнозные модели, модели машинного обучения и эффективная при решении разнообразных аналитических задач. Узнать больше про RapidMiner
Anaconda – это платформа управления пакетами приложений анализа данных (для языков Python и R) с открытым исходным кодом. Система позволяет специалистам по обработке данных быстро разворачивать проекты машинного обучения, предоставляя необходимую информацию для лиц, при ... Узнать больше про Anaconda
Deductor – это программная платформа продвинутой аналитики, позволяющая создавать законченные прикладные аналитические решения для бизнеса. Продукт снят с продажи. Узнать больше про Deductor
TIBCO Data Science – это комплексная аналитическая платформа, позволяющая применять полный комплекс современных аналитических методов над деловыми данными компании. Узнать больше про TIBCO Data Science
Видеоинтеллект – это программная система интеллектуализации видеонаблюдения для проведения автоматического анализа видеопотока и предиктивной видеоаналитики при помощи технологий AI и ML. Узнать больше про Видеоинтеллект
Yandex SpeechKit – это онлайн-сервис звукового анализа от компании Яндекс для реализации распознавания речи на основе программных алгоритмов машинного обучения в любых бизнес-приложениях. Сервис применения сервиса используется программный интерфейс (API). Узнать больше про Yandex SpeechKit
Yandex Vision – это онлайн-сервис визуальной аналитики, позволяющий реализовывать распознавание текста и объектов на изображениях с помощью программных моделей машинного обучения. Сервис используется на базе программного интерфейса (API). Узнать больше про Yandex Vision
Logi Predict – это аналитическое приложение, позволяющее анализировать информацию и прогнозировать вариантов возможных событий, обеспечиввая тем самым возможность встроить алгоритмы машинного обучения и прогностические модели в любой программный продукт. Узнать больше про Logi Predict
Программные сервисы и Системы машинного обучения (СМО, англ. Machine learning, ML) позволяют формировать прогнозы и автоматически принимать деловые решения.
Машинное обучение (МО) - это тип алгоритма или метода программирования, который позволяет программным системам и бизнес-приложениям стать более эффективными и точными в прогнозировании результатов.
Как следует из определения, программные решения с возможностями машинного обучения запрограммированы на изучение поведения пользователей и их шаблонных действий для проведения расчётной оценки потенциальных результатов на основе собранных данных.
Ключевым принципом МО является создание алгоритмов, способных получать и анализировать входные данные путем статистического анализа. Анализ производится с дальнейшей целью прогнозирования результатов. При этом, в последующем в ходе прогнозирования обучение продолжается на основе новых рабочих данных.
Основные процессы, связанные с машинным обучением, напрямую связаны с процессами искусственного интеллекта (ИИ, AI) и интеллектуального анализа данных (ИАД). Эти процессы включают в себя просеивание данных для поиска закономерностей и в то же время адаптацию программных действий к новой доступной информации.
Машинное обучение стало довольно распространенным в современной цифровой среде, хотя большинство пользователи Интернета пока не осознают это. Люди, которые часто делают покупки в Интернете или заходят в социальные сети, регулярно сталкиваются с результатами работы алгоритмов машинного обучения. Каждое объявление или предложение / рекомендация, с которыми они сталкиваются, является продуктом алгоритмов МО.
Системы машинного обучения (СМО) представляют собой прикладные приложения, где алгоритмы обучения используются в системе для обеспечения автоматизированного выполнения интеллектуальных бизнес- или производственных задач. Система или сервис подключается к источникам данных, чтобы обеспечить в течение времени научение и адаптацию алгоритма системы, создавая полезный результат.
Среди систем машинного обучения выделяют обособленный класс систем - Системы глубокого обучения (англ. Deep learning systems). Используемые в данных программных продуктах алгоритмы глубокого обучения позволяют оперировать более высокоуровневыми понятиями, в связи с чем эти системы позволяют добиваться лучших результатах в сложных задачах: оптическое распознавание символов, обработка естественного языка, аудиораспознавание, распознавание сложных событий, биоинформатика, распознавание речи.
Автоматическое (или автоматизированное) принятие решений в программном обеспечении для машинного обучения производится благодаря статистической обработке данных. Данные обрабатываются с использованием искусственных нейронных сетей (ИНС) или иных алгоритмов обучения. Существует множество различных типов алгоритмов машинного обучения, которые обладают различными преимуществами и недостатками: обучение ассоциативным правилам, байесовские сети, кластеризация, обучение деревьев решений, генетические алгоритмы, обучение классификаторов, метод опорных векторов и пр.
Важность машинного обучения и его преимущества можно поставить в один ряд с преимуществами систем искусственного интеллекта (ИИ) и интеллектуального анализа данных (ИАД). Занимаясь бизнесом, вы имеете дело с растущими объемами данных и разнообразием информации. В условиях информационного избытка важно иметь надёжные и эффективные инструменты, позволяющие вам быстро просеять информацию, найти наиболее релевантные данные, использовать данные для улучшения вашего бизнеса.
Технология машинного обучения помогает малым бизнесам, предприятиям, организациям и отдельным пользователям (фрилансерам, индивидуальным предпринимателям, аналитикам, исследователям) трансформировать процессы. Применение Систем машинного обучения позволяет сделать бизнес-процессы более упорядоченными, эффективными и удобными. Пользователи могут найти подходящие данные быстрее и проще.
Для включения в категорию Систем машинного обучения данное программное обеспечение должно удовлетворять следующим критериям:
B3 Systems
Программное обеспечение B3 – это корпоративное программное решение, объединяющее системы и сотрудников с бизнес-информацией, в которой они нуждаются, и прикладными знаниями, которые необходимы для бизнес-анализа.
Plotly
Plotly Dash – это аналитический программный фреймворк Python для быстрого создания информационных панелей (дашбордов) для веб-браузера с использованием технологий ИАД, МО и ИИ.
Dataiku
Dataiku Data Science Studio – это система анализа данных для различных компаний, независимо от их опыта, отрасли или размера, стремящихся создать стратегические преимущества бизнеса, основанные на данных..
М5 (ТМ Factory5)
F5 Platform – это платформа построения и исполнения бизнес-приложений по анализу данных с использованием алгоритмов машинного обучения. Система направлена на ускорение разработки прикладных приложений, повышение эффективности и культуры бизнес-процессов организации.
KNIME
KNIME Analytics Platform – это программная платформа анализа, интеграции данных и подготовки отчётности с открытым исходным кодом.
RapidMiner
RapidMiner – это платформа анализа данных, позволяющая развёртывать прогнозные модели, модели машинного обучения и эффективная при решении разнообразных аналитических задач.
Anaconda
Anaconda – это платформа управления пакетами приложений анализа данных (для языков Python и R) с открытым исходным кодом. Система позволяет специалистам по обработке данных быстро разворачивать проекты машинного обучения, предоставляя необходимую информацию для лиц, принимающих решения.
Loginom company
Deductor – это программная платформа продвинутой аналитики, позволяющая создавать законченные прикладные аналитические решения для бизнеса. Продукт снят с продажи.
TIBCO
TIBCO Data Science – это комплексная аналитическая платформа, позволяющая применять полный комплекс современных аналитических методов над деловыми данными компании.
Видеоинтеллект
Видеоинтеллект – это программная система интеллектуализации видеонаблюдения для проведения автоматического анализа видеопотока и предиктивной видеоаналитики при помощи технологий AI и ML.
Яндекс.Облако
Yandex SpeechKit – это онлайн-сервис звукового анализа от компании Яндекс для реализации распознавания речи на основе программных алгоритмов машинного обучения в любых бизнес-приложениях. Сервис применения сервиса используется программный интерфейс (API).
Яндекс.Облако
Yandex Vision – это онлайн-сервис визуальной аналитики, позволяющий реализовывать распознавание текста и объектов на изображениях с помощью программных моделей машинного обучения. Сервис используется на базе программного интерфейса (API).
Logi Analytics
Logi Predict – это аналитическое приложение, позволяющее анализировать информацию и прогнозировать вариантов возможных событий, обеспечиввая тем самым возможность встроить алгоритмы машинного обучения и прогностические модели в любой программный продукт.
Программные сервисы и Системы машинного обучения (СМО, англ. Machine learning, ML) позволяют формировать прогнозы и автоматически принимать деловые решения.
Машинное обучение (МО) - это тип алгоритма или метода программирования, который позволяет программным системам и бизнес-приложениям стать более эффективными и точными в прогнозировании результатов.
Как следует из определения, программные решения с возможностями машинного обучения запрограммированы на изучение поведения пользователей и их шаблонных действий для проведения расчётной оценки потенциальных результатов на основе собранных данных.
Ключевым принципом МО является создание алгоритмов, способных получать и анализировать входные данные путем статистического анализа. Анализ производится с дальнейшей целью прогнозирования результатов. При этом, в последующем в ходе прогнозирования обучение продолжается на основе новых рабочих данных.
Основные процессы, связанные с машинным обучением, напрямую связаны с процессами искусственного интеллекта (ИИ, AI) и интеллектуального анализа данных (ИАД). Эти процессы включают в себя просеивание данных для поиска закономерностей и в то же время адаптацию программных действий к новой доступной информации.
Машинное обучение стало довольно распространенным в современной цифровой среде, хотя большинство пользователи Интернета пока не осознают это. Люди, которые часто делают покупки в Интернете или заходят в социальные сети, регулярно сталкиваются с результатами работы алгоритмов машинного обучения. Каждое объявление или предложение / рекомендация, с которыми они сталкиваются, является продуктом алгоритмов МО.
Системы машинного обучения (СМО) представляют собой прикладные приложения, где алгоритмы обучения используются в системе для обеспечения автоматизированного выполнения интеллектуальных бизнес- или производственных задач. Система или сервис подключается к источникам данных, чтобы обеспечить в течение времени научение и адаптацию алгоритма системы, создавая полезный результат.
Среди систем машинного обучения выделяют обособленный класс систем - Системы глубокого обучения (англ. Deep learning systems). Используемые в данных программных продуктах алгоритмы глубокого обучения позволяют оперировать более высокоуровневыми понятиями, в связи с чем эти системы позволяют добиваться лучших результатах в сложных задачах: оптическое распознавание символов, обработка естественного языка, аудиораспознавание, распознавание сложных событий, биоинформатика, распознавание речи.
Автоматическое (или автоматизированное) принятие решений в программном обеспечении для машинного обучения производится благодаря статистической обработке данных. Данные обрабатываются с использованием искусственных нейронных сетей (ИНС) или иных алгоритмов обучения. Существует множество различных типов алгоритмов машинного обучения, которые обладают различными преимуществами и недостатками: обучение ассоциативным правилам, байесовские сети, кластеризация, обучение деревьев решений, генетические алгоритмы, обучение классификаторов, метод опорных векторов и пр.
Важность машинного обучения и его преимущества можно поставить в один ряд с преимуществами систем искусственного интеллекта (ИИ) и интеллектуального анализа данных (ИАД). Занимаясь бизнесом, вы имеете дело с растущими объемами данных и разнообразием информации. В условиях информационного избытка важно иметь надёжные и эффективные инструменты, позволяющие вам быстро просеять информацию, найти наиболее релевантные данные, использовать данные для улучшения вашего бизнеса.
Технология машинного обучения помогает малым бизнесам, предприятиям, организациям и отдельным пользователям (фрилансерам, индивидуальным предпринимателям, аналитикам, исследователям) трансформировать процессы. Применение Систем машинного обучения позволяет сделать бизнес-процессы более упорядоченными, эффективными и удобными. Пользователи могут найти подходящие данные быстрее и проще.
Для включения в категорию Систем машинного обучения данное программное обеспечение должно удовлетворять следующим критериям: