Программные сервисы и Системы машинного обучения (СМО, англ. Machine learning, ML) — это комплекс инструментов и технологий, предназначенных для анализа данных, выявления закономерностей и построения моделей, которые позволяют компьютерам обучаться на основе опыта и делать прогнозы или принимать решения без явного программирования. Эти системы используют алгоритмы и статистические модели для обработки больших объёмов данных, извлечения из них значимой информации и адаптации к новым данным, что позволяет автоматизировать процессы принятия решений и повысить их точность в различных областях, таких как финансы, медицина, маркетинг и многих других.
Классификатор программных продуктов Соваре определяет конкретные функциональные критерии для систем. Для включения в категорию Систем машинного обучения данное программное обеспечение должно удовлетворять следующим критериям:
Платформы искусственного интеллекта (AI)
Платформы разработки искусственного интеллекта и нейросетей (AI Dev)
Системы машинного обучения (ML)

Megaputer PolyAnalyst — это российская low-code платформа визуальной разработки сценариев анализа данных и текстовых документов, а также построения интерактивных отчётов, не требующая навыков программирования. Программный продукт PolyAnalyst (рус. Полианалист) от компании Мегапьютер предназначен для анализа структурированных и неструктурированных д ... Узнать больше про PolyAnalyst

Qlik Sense — это программа для бизнес-аналитики (BI), помогающая выявить сведения, которые крайне сложно получить на основе традиционных запросов в базах данных. Узнать больше про Qlik Sense

Anaconda — это платформа управления пакетами приложений анализа данных (для языков Python и R) с открытым исходным кодом. Система позволяет специалистам по обработке данных быстро разворачивать проекты машинного обучения, предоставляя необходимую информацию для лиц, при ... Узнать больше про Anaconda

Программное обеспечение B3 — это корпоративное программное решение, объединяющее системы и сотрудников с бизнес-информацией, в которой они нуждаются, и прикладными знаниями, которые необходимы для бизнес-анализа. Узнать больше про B3

Dataiku Data Science Studio — это система анализа данных для различных компаний, независимо от их опыта, отрасли или размера, стремящихся создать стратегические преимущества бизнеса, основанные на данных. Узнать больше про Dataiku DSS

F5 Platform — это платформа построения и исполнения бизнес-приложений по анализу данных с использованием алгоритмов машинного обучения. Система направлена на ускорение разработки прикладных приложений, повышение эффективности и культуры бизнес-процессов организации. Узнать больше про F5 Platform

KNIME Analytics Platform — это программная платформа анализа, интеграции данных и подготовки отчётности с открытым исходным кодом. Узнать больше про KNIME Analytics Platform

RapidMiner — это платформа анализа данных, позволяющая развёртывать прогнозные модели, модели машинного обучения и эффективная при решении разнообразных аналитических задач. Узнать больше про RapidMiner

TIBCO Data Science — это комплексная аналитическая платформа, позволяющая применять полный комплекс современных аналитических методов над деловыми данными компании. Узнать больше про TIBCO Data Science

Видеоинтеллект — это профессиональный программный комплекс российской разработки для построения современных систем интеллектуального видеонаблюдения. Узнать больше про Видеоинтеллект

Plotly Dash — это аналитический программный фреймворк Python для быстрого создания информационных панелей (дашбордов) для веб-браузера с использованием технологий ИАД, МО и ИИ. Узнать больше про Plotly Dash

Yandex SpeechKit — это онлайн-сервис звукового анализа для реализации распознавания речи на основе программных алгоритмов машинного обучения в любых бизнес-приложениях. Для применения сервиса используется программный интерфейс (API). Узнать больше про Yandex SpeechKit

Yandex Vision — это онлайн-сервис визуальной аналитики, позволяющий реализовывать распознавание текста и объектов на изображениях с помощью программных моделей машинного обучения. Сервис используется на базе программного интерфейса (API). Узнать больше про Yandex Vision
Программные сервисы и Системы машинного обучения (СМО, англ. Machine learning, ML) — это комплекс инструментов и технологий, предназначенных для анализа данных, выявления закономерностей и построения моделей, которые позволяют компьютерам обучаться на основе опыта и делать прогнозы или принимать решения без явного программирования. Эти системы используют алгоритмы и статистические модели для обработки больших объёмов данных, извлечения из них значимой информации и адаптации к новым данным, что позволяет автоматизировать процессы принятия решений и повысить их точность в различных областях, таких как финансы, медицина, маркетинг и многих других.
Машинное обучение (МО) - это тип алгоритма или метода программирования, который позволяет программным системам и бизнес-приложениям стать более эффективными и точными в прогнозировании результатов.
Как следует из определения, программные решения с возможностями машинного обучения запрограммированы на изучение поведения пользователей и их шаблонных действий для проведения расчётной оценки потенциальных результатов на основе собранных данных.
Ключевым принципом МО является создание алгоритмов, способных получать и анализировать входные данные путем статистического анализа. Анализ производится с дальнейшей целью прогнозирования результатов. При этом, в последующем в ходе прогнозирования обучение продолжается на основе новых рабочих данных.
Основные процессы, связанные с машинным обучением, напрямую связаны с процессами искусственного интеллекта (ИИ, AI) и интеллектуального анализа данных (ИАД). Эти процессы включают в себя просеивание данных для поиска закономерностей и в то же время адаптацию программных действий к новой доступной информации.
Машинное обучение стало довольно распространенным в современной цифровой среде, хотя большинство пользователи Интернета пока не осознают это. Люди, которые часто делают покупки в Интернете или заходят в социальные сети, регулярно сталкиваются с результатами работы алгоритмов машинного обучения. Каждое объявление или предложение / рекомендация, с которыми они сталкиваются, является продуктом алгоритмов МО.
Для лучшего понимания функций, решаемых задач, преимуществ и возможностей систем категории, рекомендуем ознакомление с образцовыми примерами таких программных продуктов:

Системы машинного обучения (СМО) представляют собой прикладные приложения, где алгоритмы обучения используются в системе для обеспечения автоматизированного выполнения интеллектуальных бизнес- или производственных задач. Система или сервис подключается к источникам данных, чтобы обеспечить в течение времени научение и адаптацию алгоритма системы, создавая полезный результат.
Среди систем машинного обучения выделяют обособленный класс систем - Системы глубокого обучения (англ. Deep learning systems). Используемые в данных программных продуктах алгоритмы глубокого обучения позволяют оперировать более высокоуровневыми понятиями, в связи с чем эти системы позволяют добиваться лучших результатах в сложных задачах: оптическое распознавание символов, обработка естественного языка, аудиораспознавание, распознавание сложных событий, биоинформатика, распознавание речи.
Автоматическое (или автоматизированное) принятие решений в программном обеспечении для машинного обучения производится благодаря статистической обработке данных. Данные обрабатываются с использованием искусственных нейронных сетей (ИНС) или иных алгоритмов обучения. Существует множество различных типов алгоритмов машинного обучения, которые обладают различными преимуществами и недостатками: обучение ассоциативным правилам, байесовские сети, кластеризация, обучение деревьев решений, генетические алгоритмы, обучение классификаторов, метод опорных векторов и пр.
Системы машинного обучения в основном используют следующие группы пользователей:
На основе своего экспертного мнения Соваре рекомендует наиболее внимательно подходить к выбору решения. При выборе программного продукта из функционального класса Системы машинного обучения (СМО) необходимо учитывать ряд ключевых факторов, которые определят пригодность системы для решения конкретных бизнес-задач. Прежде всего, следует оценить масштаб деятельности компании: для крупных корпораций могут потребоваться масштабируемые решения с высокой производительностью и возможностью обработки больших объёмов данных, тогда как для малого и среднего бизнеса подойдут более простые и доступные по стоимости системы. Также важно учитывать отраслевые требования и специфику бизнеса — например, в финансовом секторе могут быть необходимы системы с высокой точностью прогнозирования и соответствием регуляторным нормам, в медицине — системы, способные работать с конфиденциальными данными и соответствующие стандартам защиты информации, в маркетинге — инструменты для анализа поведения потребителей и сегментации аудитории. Не менее значимы технические ограничения, включая совместимость с существующей ИТ-инфраструктурой, требования к аппаратным ресурсам (например, объём оперативной памяти, ёмкость хранилищ данных, вычислительная мощность процессоров), а также наличие необходимых интерфейсов для интеграции с другими системами. Кроме того, стоит обратить внимание на функциональность системы: наличие предобученных моделей, возможность обучения моделей на специфических данных компании, инструменты для визуализации результатов анализа, механизмы мониторинга и оценки качества моделей.
Ключевые аспекты при принятии решения:
Выбор системы машинного обучения должен быть обоснован не только текущими потребностями бизнеса, но и перспективами его развития. Необходимо учитывать не только начальные затраты на внедрение системы, но и последующие расходы на её обслуживание, обновление, обучение персонала. Также важно оценить уровень поддержки и развития продукта со стороны разработчика, наличие сообщества пользователей и возможность получения консультаций и решений по возникающим проблемам.
Важность машинного обучения и его преимущества можно поставить в один ряд с преимуществами систем искусственного интеллекта (ИИ) и интеллектуального анализа данных (ИАД). Занимаясь бизнесом, вы имеете дело с растущими объемами данных и разнообразием информации. В условиях информационного избытка важно иметь надёжные и эффективные инструменты, позволяющие вам быстро просеять информацию, найти наиболее релевантные данные, использовать данные для улучшения вашего бизнеса.
Технология машинного обучения помогает малым бизнесам, предприятиям, организациям и отдельным пользователям (фрилансерам, индивидуальным предпринимателям, аналитикам, исследователям) трансформировать процессы. Применение Систем машинного обучения позволяет сделать бизнес-процессы более упорядоченными, эффективными и удобными. Пользователи могут найти подходящие данные быстрее и проще.
Классификатор программных продуктов Соваре определяет конкретные функциональные критерии для систем. Для включения в категорию Систем машинного обучения данное программное обеспечение должно удовлетворять следующим критериям:
По оценке аналитического центра Soware, в 2026 году на рынке систем машинного обучения (СМО) продолжат развиваться ключевые технологические тенденции, направленные на повышение эффективности и безопасности обработки данных, расширение возможностей анализа мультимодальной информации и интеграцию с корпоративными системами. Среди основных трендов можно выделить:
Интеграция мультимодальных данных. Системы СМО будут совершенствовать алгоритмы для одновременной обработки текста, изображений и аудио, что позволит создавать более точные и комплексные модели для решения междисциплинарных задач.
Объяснимый ИИ. Развитие методов интерпретации решений моделей машинного обучения останется в центре внимания, особенно в критически важных отраслях, где необходима прозрачность алгоритмов и возможность аудита их работы.
Оптимизация работы с большими данными. Будут разрабатываться новые подходы к распределённым вычислениям и хранению данных, позволяющие обрабатывать петабайты информации с минимальными задержками и ресурсозатратами.
Автоматическое машинное обучение (AutoML). Упрощение процесса разработки моделей для неспециалистов будет способствовать распространению СМО в малом и среднем бизнесе, снижая порог входа в технологии машинного обучения.
Обучение с подкреплением. Методы обучения с подкреплением найдут более широкое применение в робототехнике, логистике и управлении производственными процессами, где требуется последовательное принятие решений на основе динамически изменяющихся данных.
Безопасность и конфиденциальность данных. Разработка криптографических и организационных механизмов защиты данных при обучении моделей станет неотъемлемой частью жизненного цикла СМО, учитывая рост киберугроз и ужесточение регуляторных требований.
Интеграция с ИТ-системами. СМО будут глубже интегрироваться с корпоративными информационными системами, ERP, CRM и другими платформами, что позволит автоматизировать сбор данных и улучшить качество управленческих решений.
Мегапьютер Интеллидженс

Megaputer PolyAnalyst — это российская low-code платформа визуальной разработки сценариев анализа данных и текстовых документов, а также построения интерактивных отчётов, не требующая навыков программирования. Программный продукт PolyAnalyst (рус. Полианалист) от компании Мегапьютер предназначен для анализа структурированных и неструктурированных данных на высокопрофессиональном промышленном уровне. Система включает набор ...
Qlik

Qlik Sense — это программа для бизнес-аналитики (BI), помогающая выявить сведения, которые крайне сложно получить на основе традиционных запросов в базах данных.
Anaconda

Anaconda — это платформа управления пакетами приложений анализа данных (для языков Python и R) с открытым исходным кодом. Система позволяет специалистам по обработке данных быстро разворачивать проекты машинного обучения, предоставляя необходимую информацию для лиц, принимающих решения.
B3 Systems

Программное обеспечение B3 — это корпоративное программное решение, объединяющее системы и сотрудников с бизнес-информацией, в которой они нуждаются, и прикладными знаниями, которые необходимы для бизнес-анализа.
Dataiku

Dataiku Data Science Studio — это система анализа данных для различных компаний, независимо от их опыта, отрасли или размера, стремящихся создать стратегические преимущества бизнеса, основанные на данных.
М5

F5 Platform — это платформа построения и исполнения бизнес-приложений по анализу данных с использованием алгоритмов машинного обучения. Система направлена на ускорение разработки прикладных приложений, повышение эффективности и культуры бизнес-процессов организации.
KNIME

KNIME Analytics Platform — это программная платформа анализа, интеграции данных и подготовки отчётности с открытым исходным кодом.
RapidMiner

RapidMiner — это платформа анализа данных, позволяющая развёртывать прогнозные модели, модели машинного обучения и эффективная при решении разнообразных аналитических задач.
TIBCO

TIBCO Data Science — это комплексная аналитическая платформа, позволяющая применять полный комплекс современных аналитических методов над деловыми данными компании.
Видеоинтеллект

Видеоинтеллект — это профессиональный программный комплекс российской разработки для построения современных систем интеллектуального видеонаблюдения.
Plotly

Plotly Dash — это аналитический программный фреймворк Python для быстрого создания информационных панелей (дашбордов) для веб-браузера с использованием технологий ИАД, МО и ИИ.
Яндекс.Облако

Yandex SpeechKit — это онлайн-сервис звукового анализа для реализации распознавания речи на основе программных алгоритмов машинного обучения в любых бизнес-приложениях. Для применения сервиса используется программный интерфейс (API).
Яндекс.Облако

Yandex Vision — это онлайн-сервис визуальной аналитики, позволяющий реализовывать распознавание текста и объектов на изображениях с помощью программных моделей машинного обучения. Сервис используется на базе программного интерфейса (API).
Программные сервисы и Системы машинного обучения (СМО, англ. Machine learning, ML) — это комплекс инструментов и технологий, предназначенных для анализа данных, выявления закономерностей и построения моделей, которые позволяют компьютерам обучаться на основе опыта и делать прогнозы или принимать решения без явного программирования. Эти системы используют алгоритмы и статистические модели для обработки больших объёмов данных, извлечения из них значимой информации и адаптации к новым данным, что позволяет автоматизировать процессы принятия решений и повысить их точность в различных областях, таких как финансы, медицина, маркетинг и многих других.
Машинное обучение (МО) - это тип алгоритма или метода программирования, который позволяет программным системам и бизнес-приложениям стать более эффективными и точными в прогнозировании результатов.
Как следует из определения, программные решения с возможностями машинного обучения запрограммированы на изучение поведения пользователей и их шаблонных действий для проведения расчётной оценки потенциальных результатов на основе собранных данных.
Ключевым принципом МО является создание алгоритмов, способных получать и анализировать входные данные путем статистического анализа. Анализ производится с дальнейшей целью прогнозирования результатов. При этом, в последующем в ходе прогнозирования обучение продолжается на основе новых рабочих данных.
Основные процессы, связанные с машинным обучением, напрямую связаны с процессами искусственного интеллекта (ИИ, AI) и интеллектуального анализа данных (ИАД). Эти процессы включают в себя просеивание данных для поиска закономерностей и в то же время адаптацию программных действий к новой доступной информации.
Машинное обучение стало довольно распространенным в современной цифровой среде, хотя большинство пользователи Интернета пока не осознают это. Люди, которые часто делают покупки в Интернете или заходят в социальные сети, регулярно сталкиваются с результатами работы алгоритмов машинного обучения. Каждое объявление или предложение / рекомендация, с которыми они сталкиваются, является продуктом алгоритмов МО.
Для лучшего понимания функций, решаемых задач, преимуществ и возможностей систем категории, рекомендуем ознакомление с образцовыми примерами таких программных продуктов:

Системы машинного обучения (СМО) представляют собой прикладные приложения, где алгоритмы обучения используются в системе для обеспечения автоматизированного выполнения интеллектуальных бизнес- или производственных задач. Система или сервис подключается к источникам данных, чтобы обеспечить в течение времени научение и адаптацию алгоритма системы, создавая полезный результат.
Среди систем машинного обучения выделяют обособленный класс систем - Системы глубокого обучения (англ. Deep learning systems). Используемые в данных программных продуктах алгоритмы глубокого обучения позволяют оперировать более высокоуровневыми понятиями, в связи с чем эти системы позволяют добиваться лучших результатах в сложных задачах: оптическое распознавание символов, обработка естественного языка, аудиораспознавание, распознавание сложных событий, биоинформатика, распознавание речи.
Автоматическое (или автоматизированное) принятие решений в программном обеспечении для машинного обучения производится благодаря статистической обработке данных. Данные обрабатываются с использованием искусственных нейронных сетей (ИНС) или иных алгоритмов обучения. Существует множество различных типов алгоритмов машинного обучения, которые обладают различными преимуществами и недостатками: обучение ассоциативным правилам, байесовские сети, кластеризация, обучение деревьев решений, генетические алгоритмы, обучение классификаторов, метод опорных векторов и пр.
Системы машинного обучения в основном используют следующие группы пользователей:
На основе своего экспертного мнения Соваре рекомендует наиболее внимательно подходить к выбору решения. При выборе программного продукта из функционального класса Системы машинного обучения (СМО) необходимо учитывать ряд ключевых факторов, которые определят пригодность системы для решения конкретных бизнес-задач. Прежде всего, следует оценить масштаб деятельности компании: для крупных корпораций могут потребоваться масштабируемые решения с высокой производительностью и возможностью обработки больших объёмов данных, тогда как для малого и среднего бизнеса подойдут более простые и доступные по стоимости системы. Также важно учитывать отраслевые требования и специфику бизнеса — например, в финансовом секторе могут быть необходимы системы с высокой точностью прогнозирования и соответствием регуляторным нормам, в медицине — системы, способные работать с конфиденциальными данными и соответствующие стандартам защиты информации, в маркетинге — инструменты для анализа поведения потребителей и сегментации аудитории. Не менее значимы технические ограничения, включая совместимость с существующей ИТ-инфраструктурой, требования к аппаратным ресурсам (например, объём оперативной памяти, ёмкость хранилищ данных, вычислительная мощность процессоров), а также наличие необходимых интерфейсов для интеграции с другими системами. Кроме того, стоит обратить внимание на функциональность системы: наличие предобученных моделей, возможность обучения моделей на специфических данных компании, инструменты для визуализации результатов анализа, механизмы мониторинга и оценки качества моделей.
Ключевые аспекты при принятии решения:
Выбор системы машинного обучения должен быть обоснован не только текущими потребностями бизнеса, но и перспективами его развития. Необходимо учитывать не только начальные затраты на внедрение системы, но и последующие расходы на её обслуживание, обновление, обучение персонала. Также важно оценить уровень поддержки и развития продукта со стороны разработчика, наличие сообщества пользователей и возможность получения консультаций и решений по возникающим проблемам.
Важность машинного обучения и его преимущества можно поставить в один ряд с преимуществами систем искусственного интеллекта (ИИ) и интеллектуального анализа данных (ИАД). Занимаясь бизнесом, вы имеете дело с растущими объемами данных и разнообразием информации. В условиях информационного избытка важно иметь надёжные и эффективные инструменты, позволяющие вам быстро просеять информацию, найти наиболее релевантные данные, использовать данные для улучшения вашего бизнеса.
Технология машинного обучения помогает малым бизнесам, предприятиям, организациям и отдельным пользователям (фрилансерам, индивидуальным предпринимателям, аналитикам, исследователям) трансформировать процессы. Применение Систем машинного обучения позволяет сделать бизнес-процессы более упорядоченными, эффективными и удобными. Пользователи могут найти подходящие данные быстрее и проще.
Классификатор программных продуктов Соваре определяет конкретные функциональные критерии для систем. Для включения в категорию Систем машинного обучения данное программное обеспечение должно удовлетворять следующим критериям:
По оценке аналитического центра Soware, в 2026 году на рынке систем машинного обучения (СМО) продолжат развиваться ключевые технологические тенденции, направленные на повышение эффективности и безопасности обработки данных, расширение возможностей анализа мультимодальной информации и интеграцию с корпоративными системами. Среди основных трендов можно выделить:
Интеграция мультимодальных данных. Системы СМО будут совершенствовать алгоритмы для одновременной обработки текста, изображений и аудио, что позволит создавать более точные и комплексные модели для решения междисциплинарных задач.
Объяснимый ИИ. Развитие методов интерпретации решений моделей машинного обучения останется в центре внимания, особенно в критически важных отраслях, где необходима прозрачность алгоритмов и возможность аудита их работы.
Оптимизация работы с большими данными. Будут разрабатываться новые подходы к распределённым вычислениям и хранению данных, позволяющие обрабатывать петабайты информации с минимальными задержками и ресурсозатратами.
Автоматическое машинное обучение (AutoML). Упрощение процесса разработки моделей для неспециалистов будет способствовать распространению СМО в малом и среднем бизнесе, снижая порог входа в технологии машинного обучения.
Обучение с подкреплением. Методы обучения с подкреплением найдут более широкое применение в робототехнике, логистике и управлении производственными процессами, где требуется последовательное принятие решений на основе динамически изменяющихся данных.
Безопасность и конфиденциальность данных. Разработка криптографических и организационных механизмов защиты данных при обучении моделей станет неотъемлемой частью жизненного цикла СМО, учитывая рост киберугроз и ужесточение регуляторных требований.
Интеграция с ИТ-системами. СМО будут глубже интегрироваться с корпоративными информационными системами, ERP, CRM и другими платформами, что позволит автоматизировать сбор данных и улучшить качество управленческих решений.