Программные системы машинного зрения (СМЗ, англ. Machine vision, MV) предназначены для обработки графической информации и извлечения из неё полезных данных. С помощью такого программного обеспечения может обрабатываться самая разнообразная информация от видеопотока из торгового зала в супермаркете до данных от электронного микроскопа в рамках фармацевтических экспериментов в научной лаборатории.
Классификатор программных продуктов Соваре определяет конкретные функциональные критерии для систем. Для того, чтобы быть представленными на рынке Системы машинного зрения, системы должны иметь следующие функциональные возможности:

МТС Облачное видеонаблюдение — это онлайн-сервис, включающий 11 модулей видеоаналитики, для организации интеллектуального наблюдения за автомобилями, пассажирами, сотрудниками и иными рабочими объектами. Программный продукт МТС Облачное видеонаблюдение (англ. MTS Video Surveillance and Video Analytics) от компании МТС предназначен для централизован ... Узнать больше про МТС Облачное видеонаблюдение

Система охраны труда, промышленной безопасности и контроля нарушений — это универсальная платформа видео и аудио аналитики для выявления различных событий и нарушений техники безопасности, распознавания и анализа речи, работы с текстовой и визуальной информацией с помощ ... Узнать больше про Система охраны труда, промышленной безопасности и контроля нарушений

ITFB EasyDoc — это инновационная система, которая позволяет автоматизировать процессы распознавания текста, извлечения данных и аналитической обработки документов. Узнать больше про ITFB EasyDoc

Система анализа однородных, сгруппированных объектов — это промышленное интеллектуальное решение для анализа гранулометрического состава вещества на конвейере. Узнать больше про Система анализа однородных сгруппированных объектов
Программные системы машинного зрения (СМЗ, англ. Machine vision, MV) предназначены для обработки графической информации и извлечения из неё полезных данных. С помощью такого программного обеспечения может обрабатываться самая разнообразная информация от видеопотока из торгового зала в супермаркете до данных от электронного микроскопа в рамках фармацевтических экспериментов в научной лаборатории.
Машинное зрение как деятельность представляет собой область применения информационных технологий, ориентированную на разработку и использование программных и аппаратных средств для анализа и интерпретации визуальной информации. Системы машинного зрения (СМЗ) обрабатывают графические данные, извлекая из них полезные сведения, и находят применение в самых разных сферах — от розничной торговли до научных исследований, позволяя автоматизировать процессы распознавания и анализа объектов, выявления закономерностей и аномалий в визуальных данных.
Среди задач, решаемых с помощью машинного зрения:
Цифровые (программные) решения в области машинного зрения играют важную роль в оптимизации рабочих процессов, повышении точности и скорости анализа визуальной информации, снижении влияния человеческого фактора и минимизации ошибок. Они становятся неотъемлемой частью современных корпоративных информационных систем и способствуют росту эффективности бизнеса и научных исследований.
Системы машинного зрения предназначены для обработки графической информации и извлечения из неё полезных данных, что позволяет автоматизировать анализ визуальных данных и использовать его в различных сферах деятельности. Они способны анализировать изображения и видеопотоки, выявляя в них определённые паттерны, объекты, аномалии или другие значимые характеристики, которые могут быть использованы для принятия решений, контроля качества, мониторинга процессов и других задач.
Функциональное предназначение систем машинного зрения заключается в обеспечении возможности получения структурированных данных из неструктурированной графической информации. Это позволяет использовать их для решения широкого спектра задач — от анализа потока покупателей в торговом зале и подсчёта товаров на полках до обработки изображений с медицинских и научных приборов, контроля производственных процессов, распознавания дефектов продукции и многого другого.
Системы машинного зрения в основном используют следующие группы пользователей:
На основе своего экспертного мнения Соваре рекомендует наиболее внимательно подходить к выбору решения. При выборе программного продукта из функционального класса систем машинного зрения (СМЗ) необходимо учитывать ряд ключевых факторов, которые определят пригодность продукта для решения конкретных бизнес-задач. Прежде всего, следует проанализировать масштаб деятельности компании: для малого бизнеса могут быть достаточны решения с базовым функционалом и невысокой стоимостью, тогда как крупным предприятиям потребуются масштабируемые системы с возможностью интеграции в существующую ИТ-инфраструктуру и поддержкой большого объёма данных. Также важно учитывать специфику отрасли и соответствующие требования к качеству и формату обрабатываемой информации, наличие необходимых алгоритмов для решения специфических задач, совместимость с используемым оборудованием и программным обеспечением, требования к безопасности и защите данных, а также соответствие отраслевым стандартам и нормативам (например, в фармацевтике или медицине системы должны соответствовать требованиям к точности и воспроизводимости результатов исследований).
Ключевые аспекты при принятии решения:
После анализа вышеперечисленных факторов следует провести пилотный проект или тестирование выбранного программного продукта на ограниченном объёме данных или в тестовой среде, чтобы убедиться в его эффективности и соответствии ожиданиям. Также целесообразно изучить отзывы других компаний, уже использующих аналогичные решения, и оценить репутацию разработчика программного обеспечения.
Системы машинного зрения (СМЗ) предоставляют широкие возможности для автоматизации процессов обработки визуальной информации, что позволяет существенно повысить эффективность работы в различных отраслях. Преимущества и польза от применения СМЗ включают:
Автоматизация анализа данных. СМЗ позволяют автоматически обрабатывать большие объёмы графической информации, снижая необходимость ручного анализа и минимизируя вероятность человеческих ошибок.
Повышение точности и объективности. Алгоритмы машинного зрения обеспечивают высокую точность распознавания и классификации объектов, что важно в задачах контроля качества, диагностики и научных исследованиях.
Ускорение процессов принятия решений. Быстрая обработка и анализ визуальных данных позволяют оперативно получать информацию для принятия управленческих и технологических решений, что особенно ценно в динамичных средах.
Оптимизация производственных процессов. Внедрение СМЗ способствует автоматизации контроля за производственными линиями, выявлению дефектов и аномалий, что ведёт к снижению брака и повышению производительности.
Расширение возможностей в научных исследованиях. В лабораториях и исследовательских центрах СМЗ помогают анализировать данные с микроскопов и другого оборудования, ускоряя процесс получения научных результатов.
Улучшение безопасности и контроля. В сфере безопасности и видеонаблюдения системы машинного зрения обеспечивают автоматический мониторинг и анализ видеопотоков, выявление подозрительной активности и предотвращение инцидентов.
Снижение затрат на персонал. Автоматизация визуального анализа позволяет сократить потребность в квалифицированных специалистах для выполнения рутинных задач, связанных с обработкой изображений и видео.
Классификатор программных продуктов Соваре определяет конкретные функциональные критерии для систем. Для того, чтобы быть представленными на рынке Системы машинного зрения, системы должны иметь следующие функциональные возможности:
Аналитическая компания Soware прогнозирует, что в 2026 году на рынке систем машинного зрения (СМЗ) продолжат развиваться тенденции, зародившиеся в предыдущие годы, при этом ожидается углубление интеграции технологий и расширение их применения в различных отраслях. Среди ключевых трендов можно выделить:
Интеграция с ИИ и машинным обучением. Дальнейшее совершенствование алгоритмов распознавания и анализа изображений за счёт интеграции с технологиями искусственного интеллекта, что позволит достичь более высокого уровня точности и минимизировать ошибки в обработке данных.
Развитие облачных решений. Увеличение распространённости облачных платформ для развёртывания СМЗ, обеспечивающее гибкое масштабирование ресурсов и упрощение доступа к необходимым вычислительным мощностям для обработки больших объёмов данных.
Энергоэффективность и оптимизация ресурсов. Акцент на разработке энергоэффективных алгоритмов и архитектур СМЗ, особенно важных для мобильных и встраиваемых систем, функционирующих в условиях ограниченных ресурсов.
Расширение применения в промышленности. Усиление использования СМЗ в производственных процессах для контроля качества продукции, автоматизации сборки, мониторинга состояния оборудования и прогнозирования поломок, что способствует минимизации человеческого фактора и повышению производительности.
Улучшение пользовательских интерфейсов. Создание более интуитивно понятных и удобных интерфейсов для настройки и управления СМЗ, что сделает технологии доступными для широкого круга пользователей, не обладающих специализированными знаниями.
Безопасность и защита данных. Усиление мер по защите данных, обрабатываемых СМЗ, включая внедрение современных шифровальных механизмов и других технологий для предотвращения утечек информации и несанкционированного доступа.
Развитие мультимодальных систем. Появление СМЗ, способных одновременно обрабатывать различные типы данных (изображения, видео, текст), что откроет новые возможности для решения сложных мультидисциплинарных задач и расширит сферы применения технологий.
МТС

МТС Облачное видеонаблюдение — это онлайн-сервис, включающий 11 модулей видеоаналитики, для организации интеллектуального наблюдения за автомобилями, пассажирами, сотрудниками и иными рабочими объектами. Программный продукт МТС Облачное видеонаблюдение (англ. MTS Video Surveillance and Video Analytics) от компании МТС предназначен для централизованного сбора информации с камер видеонаблюдения, хранения архива видео и инте ...
Statanly Technologies

Система охраны труда, промышленной безопасности и контроля нарушений — это универсальная платформа видео и аудио аналитики для выявления различных событий и нарушений техники безопасности, распознавания и анализа речи, работы с текстовой и визуальной информацией с помощью больших языковых моделей.
ITFB Group

ITFB EasyDoc — это инновационная система, которая позволяет автоматизировать процессы распознавания текста, извлечения данных и аналитической обработки документов.
Statanly Technologies

Система анализа однородных, сгруппированных объектов — это промышленное интеллектуальное решение для анализа гранулометрического состава вещества на конвейере.
Программные системы машинного зрения (СМЗ, англ. Machine vision, MV) предназначены для обработки графической информации и извлечения из неё полезных данных. С помощью такого программного обеспечения может обрабатываться самая разнообразная информация от видеопотока из торгового зала в супермаркете до данных от электронного микроскопа в рамках фармацевтических экспериментов в научной лаборатории.
Машинное зрение как деятельность представляет собой область применения информационных технологий, ориентированную на разработку и использование программных и аппаратных средств для анализа и интерпретации визуальной информации. Системы машинного зрения (СМЗ) обрабатывают графические данные, извлекая из них полезные сведения, и находят применение в самых разных сферах — от розничной торговли до научных исследований, позволяя автоматизировать процессы распознавания и анализа объектов, выявления закономерностей и аномалий в визуальных данных.
Среди задач, решаемых с помощью машинного зрения:
Цифровые (программные) решения в области машинного зрения играют важную роль в оптимизации рабочих процессов, повышении точности и скорости анализа визуальной информации, снижении влияния человеческого фактора и минимизации ошибок. Они становятся неотъемлемой частью современных корпоративных информационных систем и способствуют росту эффективности бизнеса и научных исследований.
Системы машинного зрения предназначены для обработки графической информации и извлечения из неё полезных данных, что позволяет автоматизировать анализ визуальных данных и использовать его в различных сферах деятельности. Они способны анализировать изображения и видеопотоки, выявляя в них определённые паттерны, объекты, аномалии или другие значимые характеристики, которые могут быть использованы для принятия решений, контроля качества, мониторинга процессов и других задач.
Функциональное предназначение систем машинного зрения заключается в обеспечении возможности получения структурированных данных из неструктурированной графической информации. Это позволяет использовать их для решения широкого спектра задач — от анализа потока покупателей в торговом зале и подсчёта товаров на полках до обработки изображений с медицинских и научных приборов, контроля производственных процессов, распознавания дефектов продукции и многого другого.
Системы машинного зрения в основном используют следующие группы пользователей:
На основе своего экспертного мнения Соваре рекомендует наиболее внимательно подходить к выбору решения. При выборе программного продукта из функционального класса систем машинного зрения (СМЗ) необходимо учитывать ряд ключевых факторов, которые определят пригодность продукта для решения конкретных бизнес-задач. Прежде всего, следует проанализировать масштаб деятельности компании: для малого бизнеса могут быть достаточны решения с базовым функционалом и невысокой стоимостью, тогда как крупным предприятиям потребуются масштабируемые системы с возможностью интеграции в существующую ИТ-инфраструктуру и поддержкой большого объёма данных. Также важно учитывать специфику отрасли и соответствующие требования к качеству и формату обрабатываемой информации, наличие необходимых алгоритмов для решения специфических задач, совместимость с используемым оборудованием и программным обеспечением, требования к безопасности и защите данных, а также соответствие отраслевым стандартам и нормативам (например, в фармацевтике или медицине системы должны соответствовать требованиям к точности и воспроизводимости результатов исследований).
Ключевые аспекты при принятии решения:
После анализа вышеперечисленных факторов следует провести пилотный проект или тестирование выбранного программного продукта на ограниченном объёме данных или в тестовой среде, чтобы убедиться в его эффективности и соответствии ожиданиям. Также целесообразно изучить отзывы других компаний, уже использующих аналогичные решения, и оценить репутацию разработчика программного обеспечения.
Системы машинного зрения (СМЗ) предоставляют широкие возможности для автоматизации процессов обработки визуальной информации, что позволяет существенно повысить эффективность работы в различных отраслях. Преимущества и польза от применения СМЗ включают:
Автоматизация анализа данных. СМЗ позволяют автоматически обрабатывать большие объёмы графической информации, снижая необходимость ручного анализа и минимизируя вероятность человеческих ошибок.
Повышение точности и объективности. Алгоритмы машинного зрения обеспечивают высокую точность распознавания и классификации объектов, что важно в задачах контроля качества, диагностики и научных исследованиях.
Ускорение процессов принятия решений. Быстрая обработка и анализ визуальных данных позволяют оперативно получать информацию для принятия управленческих и технологических решений, что особенно ценно в динамичных средах.
Оптимизация производственных процессов. Внедрение СМЗ способствует автоматизации контроля за производственными линиями, выявлению дефектов и аномалий, что ведёт к снижению брака и повышению производительности.
Расширение возможностей в научных исследованиях. В лабораториях и исследовательских центрах СМЗ помогают анализировать данные с микроскопов и другого оборудования, ускоряя процесс получения научных результатов.
Улучшение безопасности и контроля. В сфере безопасности и видеонаблюдения системы машинного зрения обеспечивают автоматический мониторинг и анализ видеопотоков, выявление подозрительной активности и предотвращение инцидентов.
Снижение затрат на персонал. Автоматизация визуального анализа позволяет сократить потребность в квалифицированных специалистах для выполнения рутинных задач, связанных с обработкой изображений и видео.
Классификатор программных продуктов Соваре определяет конкретные функциональные критерии для систем. Для того, чтобы быть представленными на рынке Системы машинного зрения, системы должны иметь следующие функциональные возможности:
Аналитическая компания Soware прогнозирует, что в 2026 году на рынке систем машинного зрения (СМЗ) продолжат развиваться тенденции, зародившиеся в предыдущие годы, при этом ожидается углубление интеграции технологий и расширение их применения в различных отраслях. Среди ключевых трендов можно выделить:
Интеграция с ИИ и машинным обучением. Дальнейшее совершенствование алгоритмов распознавания и анализа изображений за счёт интеграции с технологиями искусственного интеллекта, что позволит достичь более высокого уровня точности и минимизировать ошибки в обработке данных.
Развитие облачных решений. Увеличение распространённости облачных платформ для развёртывания СМЗ, обеспечивающее гибкое масштабирование ресурсов и упрощение доступа к необходимым вычислительным мощностям для обработки больших объёмов данных.
Энергоэффективность и оптимизация ресурсов. Акцент на разработке энергоэффективных алгоритмов и архитектур СМЗ, особенно важных для мобильных и встраиваемых систем, функционирующих в условиях ограниченных ресурсов.
Расширение применения в промышленности. Усиление использования СМЗ в производственных процессах для контроля качества продукции, автоматизации сборки, мониторинга состояния оборудования и прогнозирования поломок, что способствует минимизации человеческого фактора и повышению производительности.
Улучшение пользовательских интерфейсов. Создание более интуитивно понятных и удобных интерфейсов для настройки и управления СМЗ, что сделает технологии доступными для широкого круга пользователей, не обладающих специализированными знаниями.
Безопасность и защита данных. Усиление мер по защите данных, обрабатываемых СМЗ, включая внедрение современных шифровальных механизмов и других технологий для предотвращения утечек информации и несанкционированного доступа.
Развитие мультимодальных систем. Появление СМЗ, способных одновременно обрабатывать различные типы данных (изображения, видео, текст), что откроет новые возможности для решения сложных мультидисциплинарных задач и расширит сферы применения технологий.