Логотип Soware
Логотип Soware

Системы продвинутой аналитики c функцией Потоковая аналитика

Программные системы продвинутой аналитики данных (ПА, англ. Advanced Analytics Systems, AA) позволяют искать неочевидные и нетривиальные связи, представления и выводы, имеющие практическое применение для решения задач бизнеса.

Для того чтобы соответствовать категории систем продвинутой аналитики, они должны иметь следующие функциональные возможности:

  • Использование алгоритмов машинного обучения и искусственного интеллекта для автоматизации анализа данных и выявления скрытых закономерностей.

  • Возможность интеграции с различными источниками данных, включая структурированные и неструктурированные данные, для получения полной картины происходящего.

  • Поддержка визуализации данных для наглядного представления результатов анализа и облегчения их интерпретации.

  • Функция прогнозирования, позволяющая строить модели будущего поведения на основе исторических данных и текущих тенденций.

  • Автоматизация процесса анализа, позволяющая минимизировать участие человека в рутинных задачах и сосредоточиться на интерпретации результатов.

Сравнение Системы продвинутой аналитики

Выбрать по критериям:

Подходит для
Функции
Особенности
Тарификация
Развёртывание
Графический интерфейс
Поддержка языков
Страна происхождения
Сортировать:
Систем: 9
Логотип PolyAnalyst

PolyAnalyst от Мегапьютер Интеллидженс

PolyAnalyst — это российская low-code платформа визуальной разработки сценариев анализа данных и текстовых документов, а также построения интерактивных отчётов, не требующая навыков программирования. Программный продукт PolyAnalyst (рус. Полианалист) от компании Мегапьютер предназначен для анализа структурированных и неструктурированных данных на в ... Узнать больше про PolyAnalyst

Логотип Loginom

Loginom от Аналитические технологии

Loginom — это аналитическая low-code платформа, обеспечивающая интеграцию, очистку и анализ данных для принятия более эффективных управленческих решений. Программный продукт Loginom (рус. Лоджином) от компании Loginom company (ООО «Аналитические технологии») предназначен для анализа и обработки бизнес-данных на базе методов визуального проектирован ... Узнать больше про Loginom

Логотип In-DAP

In-DAP от Innostage Центр Разработок

In-DAP - платформа поддержки принятия управленческих решений, позволяющая при помощи инструментов Models, Indicators и Prisma разрабатывать аналитические модели и работать с показателями деятельности компании, в том числе по информационной безопасности. Аналитическая платформа Innostage Data Analysis Platform (In-DAP, рус. Ин-ДАП) предназначена для ... Узнать больше про In-DAP

Логотип TIBCO Data Science

TIBCO Data Science от TIBCO

TIBCO Data Science — это комплексная аналитическая платформа, позволяющая применять полный комплекс современных аналитических методов над деловыми данными компании. Узнать больше про TIBCO Data Science

Логотип F5 Platform

F5 Platform от М5

F5 Platform — это платформа построения и исполнения бизнес-приложений по анализу данных с использованием алгоритмов машинного обучения. Система направлена на ускорение разработки прикладных приложений, повышение эффективности и культуры бизнес-процессов организации. Узнать больше про F5 Platform

Логотип KNIME Analytics Platform

KNIME Analytics Platform от KNIME

KNIME Analytics Platform — это программная платформа анализа, интеграции данных и подготовки отчётности с открытым исходным кодом. Узнать больше про KNIME Analytics Platform

Логотип M-Brain Intelligence Plaza

M-Brain Intelligence Plaza от M-Brain

M-Brain Intelligence Plaza — это ИТ-платформа для управления потоками информации о рынках и конкурентах для отделов аналитики, продаж, маркетинга, менеджмента. Хранение в облаке, структурирование и внутрикорпоративная рассылка информации по темам, как: отрасли, компании ... Узнать больше про M-Brain Intelligence Plaza

Логотип Informatica PowerCenter

Informatica PowerCenter от Informatica

Informatica PowerCenter — это платформа интеграции корпоративных данных, помогающая организациям получать доступ, преобразовывать и интегрировать данные из различных систем на лету. Узнать больше про Informatica PowerCenter

Логотип Dataiku DSS

Dataiku DSS от Dataiku

Dataiku Data Science Studio — это система анализа данных для различных компаний, независимо от их опыта, отрасли или размера, стремящихся создать стратегические преимущества бизнеса, основанные на данных. Узнать больше про Dataiku DSS

Руководство по покупке Системы продвинутой аналитики

1. Что такое Системы продвинутой аналитики

Программные системы продвинутой аналитики данных (ПА, англ. Advanced Analytics Systems, AA) позволяют искать неочевидные и нетривиальные связи, представления и выводы, имеющие практическое применение для решения задач бизнеса.

2. Зачем бизнесу Системы продвинутой аналитики

Продвинутая аналитика - это процесс детального анализа больших объёмов данных с использованием различных методов и технологий, таких как статистика, машинное обучение и искусственный интеллект.

Бизнес-процесс продвинутой аналитики - это последовательность шагов, которые проводятся для применения продвинутой аналитики в бизнесе с целью улучшения производительности, эффективности бизнес-процессов, оптимизации решений и увеличения прибыли.

В бизнес-процессе продвинутой аналитики могут использоваться различные инструменты и методы, например, анализ данных, моделирование бизнес-процессов, прогнозирование и машинное обучение.

3. Образцовые примеры Системы продвинутой аналитики

Для лучшего понимания функций, решаемых задач, преимуществ и возможностей систем категории, рекомендуем ознакомление с образцовыми примерами таких программных продуктов:

Логотип PolyAnalyst
PolyAnalystМегапьютер ИнтеллидженсОфициальный сайт

4. Назначение и цели использования Системы продвинутой аналитики

Системы продвинутой аналитики предназначены для глубокого анализа данных, выявления закономерностей, взаимосвязей и причин событий, а также прогнозирования будущих результатов. Они позволяют компаниям принимать обоснованные решения на основе анализа больших объёмов данных, что способствует оптимизации бизнес-процессов, снижению рисков и повышению эффективности работы.

Продвинутая аналитика включает в себя несколько видов анализа: дескриптивную аналитику, которая описывает текущие состояния и выявляет проблемы; прогнозную аналитику, используемую для предсказания будущих тенденций на основе исторических данных; предиктивную аналитику, фокусирующуюся на выявлении потенциальных рисков и возможностей; и прескриптивную аналитику, предлагающую конкретные действия для достижения желаемых результатов. Эти системы помогают предприятиям адаптироваться к изменяющимся условиям рынка, повышать конкурентоспособность и достигать стратегических целей.

5. Основные пользователи Системы продвинутой аналитики

Системы продвинутой аналитики в основном используют следующие группы пользователей:

  • крупные корпорации и холдинги для оптимизации бизнес-процессов, выявления скрытых закономерностей в больших объёмах данных и повышения эффективности принятия управленческих решений;
  • финансовые учреждения и инвестиционные компании для анализа рыночных тенденций, прогнозирования колебаний курсов, оценки рисков и формирования инвестиционных стратегий;
  • розничные и оптовые торговые сети для анализа потребительского поведения, оптимизации ассортимента, управления запасами и прогнозирования спроса;
  • производственные предприятия для анализа производственных процессов, выявления узких мест, прогнозирования потребности в ресурсах и оптимизации логистики;
  • компании в сфере телекоммуникаций и IT для анализа пользовательского поведения, оптимизации сетевых ресурсов, выявления аномалий в трафике и предотвращения технических сбоев;
  • медицинские и фармацевтические организации для анализа медицинских данных, выявления закономерностей в распространении заболеваний, разработки новых лекарственных препаратов и оптимизации процессов лечения;
  • государственные и муниципальные учреждения для анализа социально-экономических показателей, прогнозирования развития регионов, оптимизации бюджетных расходов и повышения эффективности управления ресурсами.

6. Обзор основных функций и возможностей Системы продвинутой аналитики

Администрирование
Возможность администрирования позволяет осуществлять настройку и управление функциональностью системы, а также управление учётными записями и правами доступа к системе.
Анализ больших данных
Функции Анализа больших данных (англ. Big Data Analysis, BDA) реализуют поддержку очень больших наборов данных для исследования предметной области, построения сложных моделей обработки данных и выявления неявных тенденций
Визуализация данных
Функции Визуализация данных позволяет пользователям выявлять причинно-следственные связи событий, формировать гипотезы или проверять идеи на основании визуального анализа данных
Импорт/экспорт данных
Возможность импорта и/или экспорта данных в продукте позволяет загрузить данные из наиболее популярных файловых форматов или выгрузить рабочие данные в файл для дальнейшего использования в другом ПО.
Индикация трендов и проблем
Функции Индикации трендов и проблем позволяют пользователям настроить автоматическое определение интересующих событий исходя из набора признаков и факторов
Интеллектуальный анализ данных (ИАД)
Функции Интеллектуального анализа данных (ИАД, англ Data Mining, DM) реализуют поиск неочевидных закономерностей, тенденций или извлечения иной информации из больших наборов данных с помощью графических или других инструментов
Машинное обучение
Функции Машинного обучения (англ. Machine Learning, ML) позволяют использовать для решения поставленных задач обучающиеся алгоритмы, проводя исследования на множестве аналогичных заданий, для полной или частичной автоматизации процессов принятия решений, управления рисками и т.д.
Многопользовательский доступ
Возможность многопользовательской доступа в программную систему обеспечивает одновременную работу нескольких пользователей на одной базе данных под собственными учётными записями. Пользователи в этом случае могут иметь отличающиеся права доступа к данным и функциям программного обеспечения.
Наличие API
Часто при использовании современного делового программного обеспечения возникает потребность автоматической передачи данных из одного ПО в другое. Например, может быть полезно автоматически передавать данные из Системы управления взаимоотношениями с клиентами (CRM) в Систему бухгалтерского учёта (БУ). Для обеспечения такого и подобных сопряжений программные системы оснащаются специальными Прикладными программными интерфейсами (англ. API, Application Programming Interface). С помощью таких API любые компетентные программисты смогут связать два программных продукта между собой для автоматического обмена информацией.
Отчётность и аналитика
Наличие у продукта функций подготовки отчётности и/или аналитики позволяют получать систематизированные и визуализированные данные из системы для последующего анализа и принятия решений на основе данных.
Потоковая аналитика
Функции Потоковой аналитики данных позволяют «на лету» применять аналитические алгоритмы над данными в режиме реального времени для отслеживания ключевых показателей бизнес-процессов
Прогнозирование и предсказательная аналитика
Функции Прогнозирования и Предсказательной аналитики позволяют пользователям составлять прогнозы предстоящих затрат, продаж, доходов и иных событий на основании прошлых данных с использованием различных статистических методов прогнозирования
Статистический анализ
Функции Статистического анализа дают пользователю инструментарий по математической организации данных, их исследованию, математической интерпретации и представлении данных, а также о выявлении регулярных закономерностей и тенденций
Интерактивная аналитическая обработка (OLAP)
Интерактивная аналитическая обработка (англ. OLAP) позволяет пользователям в реальном времени (онлайн) оперативно получать агрегированную информацию на основе больших массивов данных
Коннекторы для источников данных
Коннекторы для источников данных подразумевает либо преднастроенную интеграцию со сторонними источниками данных, либо возможность настройки данного взаимодействия на основе гибкого прикладного программного интерфейса (англ. Application Programming Interface, API)

7. Рекомендации по выбору Системы продвинутой аналитики

При выборе программного продукта из функционального класса Системы продвинутой аналитики необходимо учитывать ряд ключевых факторов, которые определят пригодность системы для решения конкретных бизнес-задач. Важно проанализировать масштаб деятельности компании — для малого бизнеса могут подойти более простые и гибкие решения с базовым набором аналитических инструментов, в то время как крупным корпорациям потребуются масштабируемые системы с возможностью обработки больших объёмов данных и интеграции с существующими корпоративными информационными системами. Также следует оценить отраслевые требования и специфику бизнеса — например, в финансовом секторе могут быть необходимы функции прогнозирования и моделирования рисков, в розничной торговле — инструменты анализа покупательского поведения и оптимизации ассортимента, а в производственной сфере — средства для анализа эффективности производственных процессов и прогнозирования спроса на сырьё и материалы. Не менее важны технические ограничения, включая совместимость с текущей ИТ-инфраструктурой, требования к аппаратным ресурсам (например, объём оперативной памяти, ёмкость хранилищ данных), поддержку определённых операционных систем и баз данных. Кроме того, стоит обратить внимание на наличие механизмов обеспечения безопасности данных, возможности визуализации результатов анализа, уровень поддержки и сопровождения со стороны разработчика, а также наличие обучающих материалов и сообществ пользователей.

Ключевые аспекты при принятии решения:

  • соответствие функциональности системы специфике бизнес-процессов и задачам компании (например, наличие инструментов для прогнозирования, сегментации данных, выявления аномалий);
  • возможность интеграции с существующими информационными системами и источниками данных (например, ERP, CRM, системами управления складом);
  • масштабируемость и производительность системы в контексте ожидаемого объёма данных и количества одновременных пользователей;
  • поддержка необходимых форматов данных и возможность работы с различными типами данных (структурированными, неструктурированными, временными рядами и т. д.);
  • наличие механизмов обеспечения информационной безопасности и соответствия отраслевым стандартам (например, требованиям к защите персональных данных, финансовым нормативам);
  • удобство интерфейса и возможности визуализации аналитических данных для облегчения интерпретации результатов;
  • наличие модулей или инструментов для машинного обучения и построения предсказательных моделей, если это требуется для решения бизнес-задач;
  • условия лицензирования, стоимость владения и обслуживания системы, включая возможные дополнительные расходы на обучение персонала и техническую поддержку.

Окончательный выбор системы продвинутой аналитики должен базироваться на комплексном анализе всех вышеперечисленных факторов с учётом долгосрочных целей компании и потенциала развития бизнеса. Необходимо также предусмотреть возможность тестирования системы (например, в формате пилотного проекта) для оценки её эффективности в реальных условиях эксплуатации и выявления потенциальных проблем на ранних этапах внедрения.

8. Выгоды, преимущества и польза от применения Системы продвинутой аналитики

Программная система продвинутой аналитики может иметь несколько преимуществ, вот некоторые из них:

  • Более точные прогнозы: система аналитики может использовать большой объем данных для создания более точных прогнозов. Это позволяет бизнесу принимать более обоснованные решения и более точно предсказывать их результативность.

  • Определение трендов: система аналитики может анализировать большие объемы данных за короткий период времени, что позволяет определить тенденции и тренды на рынке. Это позволяет бизнесу адаптироваться к изменяющимся требованиям рынка и оставаться конкурентоспособным.

  • Повышение эффективности: аналитика может помочь бизнесу определить области, в которых можно повысить эффективность. Например, может быть выявлено, что определенный продукт имеет низкую отдачу, что позволяет бизнесу сконцентрироваться на других продуктах с высокой отдачей.

  • Повышение конкурентоспособности: система аналитики позволяет бизнесу оперативно реагировать на изменения на рынке и предугадывать потенциальные проблемы. Это позволяет бизнесу опередить конкурентов и сохранять свою конкурентоспособность.

  • Улучшение качества принимаемых решений: благодаря использованию большого объема данных и более точным прогнозам, система аналитики позволяет бизнесу принимать более обоснованные и качественные решения. Это повышает вероятность того, что решения приведут к успеху.

9. Отличительные черты Системы продвинутой аналитики

Для того чтобы соответствовать категории систем продвинутой аналитики, они должны иметь следующие функциональные возможности:

  • Использование алгоритмов машинного обучения и искусственного интеллекта для автоматизации анализа данных и выявления скрытых закономерностей.

  • Возможность интеграции с различными источниками данных, включая структурированные и неструктурированные данные, для получения полной картины происходящего.

  • Поддержка визуализации данных для наглядного представления результатов анализа и облегчения их интерпретации.

  • Функция прогнозирования, позволяющая строить модели будущего поведения на основе исторических данных и текущих тенденций.

  • Автоматизация процесса анализа, позволяющая минимизировать участие человека в рутинных задачах и сосредоточиться на интерпретации результатов.

10. Тенденции в области Системы продвинутой аналитики

В 2025 году на рынке систем продвинутой аналитики (ПА) можно ожидать усиления тенденций, связанных с углублением интеграции искусственного интеллекта и машинного обучения, расширением возможностей обработки неструктурированных данных, повышением внимания к объяснимости и прозрачности аналитических моделей, развитием технологий распределённых вычислений и облачных решений, а также усилением акцента на кибербезопасность и защиту данных.

  • Интеграция генеративных моделей. Внедрение генеративных моделей ИИ для создания синтетических данных и улучшения качества аналитических прогнозов, что позволит повысить точность и надёжность выводов в различных отраслях.

  • Обработка мультимодальных данных. Развитие алгоритмов, способных эффективно анализировать данные различных типов (текст, изображения, аудио), что расширит возможности применения ПА в таких сферах, как медицина, образование и медиа.

  • Объяснимый ИИ. Увеличение спроса на инструменты, обеспечивающие прозрачность и интерпретируемость моделей машинного обучения, что важно для соблюдения регуляторных требований и повышения доверия пользователей.

  • Распределённые вычислительные системы. Развитие технологий распределённых вычислений для обработки больших объёмов данных, что позволит снизить время анализа и оптимизировать затраты на вычислительные ресурсы.

  • Облачные решения для ПА. Расширение спектра облачных сервисов, предоставляющих доступ к мощным аналитическим инструментам, что сделает ПА более доступными для малого и среднего бизнеса.

  • Кибербезопасность аналитических систем. Усиление мер по защите данных и моделей от киберугроз, разработка специализированных решений для обеспечения безопасности при работе с конфиденциальной информацией.

  • Автоматизация аналитических процессов. Дальнейшее развитие инструментов для автоматизации сбора, обработки и анализа данных, что позволит сократить время на подготовку аналитических отчётов и повысить эффективность принятия решений.

11. В каких странах разрабатываются Системы продвинутой аналитики

Компании-разработчики, создающие advanced-analytics-systems, работают в различных странах. Ниже перечислены программные продукты данного класса по странам происхождения
Россия
PolyAnalyst, Loginom, In-DAP, F5 Platform
Финляндия
M-Brain Intelligence Plaza
Швейцария
KNIME Analytics Platform
США
Informatica PowerCenter, Dataiku DSS, TIBCO Data Science

Сравнение Системы продвинутой аналитики

Систем: 9

PolyAnalyst

Мегапьютер Интеллидженс

Логотип системы PolyAnalyst

PolyAnalyst — это российская low-code платформа визуальной разработки сценариев анализа данных и текстовых документов, а также построения интерактивных отчётов, не требующая навыков программирования. Программный продукт PolyAnalyst (рус. Полианалист) от компании Мегапьютер предназначен для анализа структурированных и неструктурированных данных на высокопрофессиональном промышленном уровне. Система включает набор инструмен ...

Loginom

Аналитические технологии

Логотип системы Loginom

Loginom — это аналитическая low-code платформа, обеспечивающая интеграцию, очистку и анализ данных для принятия более эффективных управленческих решений. Программный продукт Loginom (рус. Лоджином) от компании Loginom company (ООО «Аналитические технологии») предназначен для анализа и обработки бизнес-данных на базе методов визуального проектирования, является универсальным конструктором с набором готовых компонентов. Дел ...

In-DAP

Innostage Центр Разработок

Логотип системы In-DAP

In-DAP - платформа поддержки принятия управленческих решений, позволяющая при помощи инструментов Models, Indicators и Prisma разрабатывать аналитические модели и работать с показателями деятельности компании, в том числе по информационной безопасности. Аналитическая платформа Innostage Data Analysis Platform (In-DAP, рус. Ин-ДАП) предназначена для решения нестандартных, ситуационных задач связанных с проведением различны ...

TIBCO Data Science

TIBCO

Логотип системы TIBCO Data Science

TIBCO Data Science — это комплексная аналитическая платформа, позволяющая применять полный комплекс современных аналитических методов над деловыми данными компании.

F5 Platform

М5

Логотип системы F5 Platform

F5 Platform — это платформа построения и исполнения бизнес-приложений по анализу данных с использованием алгоритмов машинного обучения. Система направлена на ускорение разработки прикладных приложений, повышение эффективности и культуры бизнес-процессов организации.

KNIME Analytics Platform

KNIME

Логотип системы KNIME Analytics Platform

KNIME Analytics Platform — это программная платформа анализа, интеграции данных и подготовки отчётности с открытым исходным кодом.

M-Brain Intelligence Plaza

M-Brain

Логотип системы M-Brain Intelligence Plaza

M-Brain Intelligence Plaza — это ИТ-платформа для управления потоками информации о рынках и конкурентах для отделов аналитики, продаж, маркетинга, менеджмента. Хранение в облаке, структурирование и внутрикорпоративная рассылка информации по темам, как: отрасли, компании и другим.

Informatica PowerCenter

Informatica

Логотип системы Informatica PowerCenter

Informatica PowerCenter — это платформа интеграции корпоративных данных, помогающая организациям получать доступ, преобразовывать и интегрировать данные из различных систем на лету.

Dataiku DSS

Dataiku

Логотип системы Dataiku DSS

Dataiku Data Science Studio — это система анализа данных для различных компаний, независимо от их опыта, отрасли или размера, стремящихся создать стратегические преимущества бизнеса, основанные на данных.

Руководство по покупке Системы продвинутой аналитики

Что такое Системы продвинутой аналитики

Программные системы продвинутой аналитики данных (ПА, англ. Advanced Analytics Systems, AA) позволяют искать неочевидные и нетривиальные связи, представления и выводы, имеющие практическое применение для решения задач бизнеса.

Зачем бизнесу Системы продвинутой аналитики

Продвинутая аналитика - это процесс детального анализа больших объёмов данных с использованием различных методов и технологий, таких как статистика, машинное обучение и искусственный интеллект.

Бизнес-процесс продвинутой аналитики - это последовательность шагов, которые проводятся для применения продвинутой аналитики в бизнесе с целью улучшения производительности, эффективности бизнес-процессов, оптимизации решений и увеличения прибыли.

В бизнес-процессе продвинутой аналитики могут использоваться различные инструменты и методы, например, анализ данных, моделирование бизнес-процессов, прогнозирование и машинное обучение.

Образцовые примеры Системы продвинутой аналитики

Для лучшего понимания функций, решаемых задач, преимуществ и возможностей систем категории, рекомендуем ознакомление с образцовыми примерами таких программных продуктов:

Логотип PolyAnalyst
PolyAnalystМегапьютер ИнтеллидженсОфициальный сайт
Назначение и цели использования Системы продвинутой аналитики

Системы продвинутой аналитики предназначены для глубокого анализа данных, выявления закономерностей, взаимосвязей и причин событий, а также прогнозирования будущих результатов. Они позволяют компаниям принимать обоснованные решения на основе анализа больших объёмов данных, что способствует оптимизации бизнес-процессов, снижению рисков и повышению эффективности работы.

Продвинутая аналитика включает в себя несколько видов анализа: дескриптивную аналитику, которая описывает текущие состояния и выявляет проблемы; прогнозную аналитику, используемую для предсказания будущих тенденций на основе исторических данных; предиктивную аналитику, фокусирующуюся на выявлении потенциальных рисков и возможностей; и прескриптивную аналитику, предлагающую конкретные действия для достижения желаемых результатов. Эти системы помогают предприятиям адаптироваться к изменяющимся условиям рынка, повышать конкурентоспособность и достигать стратегических целей.

Основные пользователи Системы продвинутой аналитики

Системы продвинутой аналитики в основном используют следующие группы пользователей:

  • крупные корпорации и холдинги для оптимизации бизнес-процессов, выявления скрытых закономерностей в больших объёмах данных и повышения эффективности принятия управленческих решений;
  • финансовые учреждения и инвестиционные компании для анализа рыночных тенденций, прогнозирования колебаний курсов, оценки рисков и формирования инвестиционных стратегий;
  • розничные и оптовые торговые сети для анализа потребительского поведения, оптимизации ассортимента, управления запасами и прогнозирования спроса;
  • производственные предприятия для анализа производственных процессов, выявления узких мест, прогнозирования потребности в ресурсах и оптимизации логистики;
  • компании в сфере телекоммуникаций и IT для анализа пользовательского поведения, оптимизации сетевых ресурсов, выявления аномалий в трафике и предотвращения технических сбоев;
  • медицинские и фармацевтические организации для анализа медицинских данных, выявления закономерностей в распространении заболеваний, разработки новых лекарственных препаратов и оптимизации процессов лечения;
  • государственные и муниципальные учреждения для анализа социально-экономических показателей, прогнозирования развития регионов, оптимизации бюджетных расходов и повышения эффективности управления ресурсами.
Обзор основных функций и возможностей Системы продвинутой аналитики
Администрирование
Возможность администрирования позволяет осуществлять настройку и управление функциональностью системы, а также управление учётными записями и правами доступа к системе.
Анализ больших данных
Функции Анализа больших данных (англ. Big Data Analysis, BDA) реализуют поддержку очень больших наборов данных для исследования предметной области, построения сложных моделей обработки данных и выявления неявных тенденций
Визуализация данных
Функции Визуализация данных позволяет пользователям выявлять причинно-следственные связи событий, формировать гипотезы или проверять идеи на основании визуального анализа данных
Импорт/экспорт данных
Возможность импорта и/или экспорта данных в продукте позволяет загрузить данные из наиболее популярных файловых форматов или выгрузить рабочие данные в файл для дальнейшего использования в другом ПО.
Индикация трендов и проблем
Функции Индикации трендов и проблем позволяют пользователям настроить автоматическое определение интересующих событий исходя из набора признаков и факторов
Интеллектуальный анализ данных (ИАД)
Функции Интеллектуального анализа данных (ИАД, англ Data Mining, DM) реализуют поиск неочевидных закономерностей, тенденций или извлечения иной информации из больших наборов данных с помощью графических или других инструментов
Машинное обучение
Функции Машинного обучения (англ. Machine Learning, ML) позволяют использовать для решения поставленных задач обучающиеся алгоритмы, проводя исследования на множестве аналогичных заданий, для полной или частичной автоматизации процессов принятия решений, управления рисками и т.д.
Многопользовательский доступ
Возможность многопользовательской доступа в программную систему обеспечивает одновременную работу нескольких пользователей на одной базе данных под собственными учётными записями. Пользователи в этом случае могут иметь отличающиеся права доступа к данным и функциям программного обеспечения.
Наличие API
Часто при использовании современного делового программного обеспечения возникает потребность автоматической передачи данных из одного ПО в другое. Например, может быть полезно автоматически передавать данные из Системы управления взаимоотношениями с клиентами (CRM) в Систему бухгалтерского учёта (БУ). Для обеспечения такого и подобных сопряжений программные системы оснащаются специальными Прикладными программными интерфейсами (англ. API, Application Programming Interface). С помощью таких API любые компетентные программисты смогут связать два программных продукта между собой для автоматического обмена информацией.
Отчётность и аналитика
Наличие у продукта функций подготовки отчётности и/или аналитики позволяют получать систематизированные и визуализированные данные из системы для последующего анализа и принятия решений на основе данных.
Потоковая аналитика
Функции Потоковой аналитики данных позволяют «на лету» применять аналитические алгоритмы над данными в режиме реального времени для отслеживания ключевых показателей бизнес-процессов
Прогнозирование и предсказательная аналитика
Функции Прогнозирования и Предсказательной аналитики позволяют пользователям составлять прогнозы предстоящих затрат, продаж, доходов и иных событий на основании прошлых данных с использованием различных статистических методов прогнозирования
Статистический анализ
Функции Статистического анализа дают пользователю инструментарий по математической организации данных, их исследованию, математической интерпретации и представлении данных, а также о выявлении регулярных закономерностей и тенденций
Интерактивная аналитическая обработка (OLAP)
Интерактивная аналитическая обработка (англ. OLAP) позволяет пользователям в реальном времени (онлайн) оперативно получать агрегированную информацию на основе больших массивов данных
Коннекторы для источников данных
Коннекторы для источников данных подразумевает либо преднастроенную интеграцию со сторонними источниками данных, либо возможность настройки данного взаимодействия на основе гибкого прикладного программного интерфейса (англ. Application Programming Interface, API)
Рекомендации по выбору Системы продвинутой аналитики

При выборе программного продукта из функционального класса Системы продвинутой аналитики необходимо учитывать ряд ключевых факторов, которые определят пригодность системы для решения конкретных бизнес-задач. Важно проанализировать масштаб деятельности компании — для малого бизнеса могут подойти более простые и гибкие решения с базовым набором аналитических инструментов, в то время как крупным корпорациям потребуются масштабируемые системы с возможностью обработки больших объёмов данных и интеграции с существующими корпоративными информационными системами. Также следует оценить отраслевые требования и специфику бизнеса — например, в финансовом секторе могут быть необходимы функции прогнозирования и моделирования рисков, в розничной торговле — инструменты анализа покупательского поведения и оптимизации ассортимента, а в производственной сфере — средства для анализа эффективности производственных процессов и прогнозирования спроса на сырьё и материалы. Не менее важны технические ограничения, включая совместимость с текущей ИТ-инфраструктурой, требования к аппаратным ресурсам (например, объём оперативной памяти, ёмкость хранилищ данных), поддержку определённых операционных систем и баз данных. Кроме того, стоит обратить внимание на наличие механизмов обеспечения безопасности данных, возможности визуализации результатов анализа, уровень поддержки и сопровождения со стороны разработчика, а также наличие обучающих материалов и сообществ пользователей.

Ключевые аспекты при принятии решения:

  • соответствие функциональности системы специфике бизнес-процессов и задачам компании (например, наличие инструментов для прогнозирования, сегментации данных, выявления аномалий);
  • возможность интеграции с существующими информационными системами и источниками данных (например, ERP, CRM, системами управления складом);
  • масштабируемость и производительность системы в контексте ожидаемого объёма данных и количества одновременных пользователей;
  • поддержка необходимых форматов данных и возможность работы с различными типами данных (структурированными, неструктурированными, временными рядами и т. д.);
  • наличие механизмов обеспечения информационной безопасности и соответствия отраслевым стандартам (например, требованиям к защите персональных данных, финансовым нормативам);
  • удобство интерфейса и возможности визуализации аналитических данных для облегчения интерпретации результатов;
  • наличие модулей или инструментов для машинного обучения и построения предсказательных моделей, если это требуется для решения бизнес-задач;
  • условия лицензирования, стоимость владения и обслуживания системы, включая возможные дополнительные расходы на обучение персонала и техническую поддержку.

Окончательный выбор системы продвинутой аналитики должен базироваться на комплексном анализе всех вышеперечисленных факторов с учётом долгосрочных целей компании и потенциала развития бизнеса. Необходимо также предусмотреть возможность тестирования системы (например, в формате пилотного проекта) для оценки её эффективности в реальных условиях эксплуатации и выявления потенциальных проблем на ранних этапах внедрения.

Выгоды, преимущества и польза от применения Системы продвинутой аналитики

Программная система продвинутой аналитики может иметь несколько преимуществ, вот некоторые из них:

  • Более точные прогнозы: система аналитики может использовать большой объем данных для создания более точных прогнозов. Это позволяет бизнесу принимать более обоснованные решения и более точно предсказывать их результативность.

  • Определение трендов: система аналитики может анализировать большие объемы данных за короткий период времени, что позволяет определить тенденции и тренды на рынке. Это позволяет бизнесу адаптироваться к изменяющимся требованиям рынка и оставаться конкурентоспособным.

  • Повышение эффективности: аналитика может помочь бизнесу определить области, в которых можно повысить эффективность. Например, может быть выявлено, что определенный продукт имеет низкую отдачу, что позволяет бизнесу сконцентрироваться на других продуктах с высокой отдачей.

  • Повышение конкурентоспособности: система аналитики позволяет бизнесу оперативно реагировать на изменения на рынке и предугадывать потенциальные проблемы. Это позволяет бизнесу опередить конкурентов и сохранять свою конкурентоспособность.

  • Улучшение качества принимаемых решений: благодаря использованию большого объема данных и более точным прогнозам, система аналитики позволяет бизнесу принимать более обоснованные и качественные решения. Это повышает вероятность того, что решения приведут к успеху.

Отличительные черты Системы продвинутой аналитики

Для того чтобы соответствовать категории систем продвинутой аналитики, они должны иметь следующие функциональные возможности:

  • Использование алгоритмов машинного обучения и искусственного интеллекта для автоматизации анализа данных и выявления скрытых закономерностей.

  • Возможность интеграции с различными источниками данных, включая структурированные и неструктурированные данные, для получения полной картины происходящего.

  • Поддержка визуализации данных для наглядного представления результатов анализа и облегчения их интерпретации.

  • Функция прогнозирования, позволяющая строить модели будущего поведения на основе исторических данных и текущих тенденций.

  • Автоматизация процесса анализа, позволяющая минимизировать участие человека в рутинных задачах и сосредоточиться на интерпретации результатов.

Тенденции в области Системы продвинутой аналитики

В 2025 году на рынке систем продвинутой аналитики (ПА) можно ожидать усиления тенденций, связанных с углублением интеграции искусственного интеллекта и машинного обучения, расширением возможностей обработки неструктурированных данных, повышением внимания к объяснимости и прозрачности аналитических моделей, развитием технологий распределённых вычислений и облачных решений, а также усилением акцента на кибербезопасность и защиту данных.

  • Интеграция генеративных моделей. Внедрение генеративных моделей ИИ для создания синтетических данных и улучшения качества аналитических прогнозов, что позволит повысить точность и надёжность выводов в различных отраслях.

  • Обработка мультимодальных данных. Развитие алгоритмов, способных эффективно анализировать данные различных типов (текст, изображения, аудио), что расширит возможности применения ПА в таких сферах, как медицина, образование и медиа.

  • Объяснимый ИИ. Увеличение спроса на инструменты, обеспечивающие прозрачность и интерпретируемость моделей машинного обучения, что важно для соблюдения регуляторных требований и повышения доверия пользователей.

  • Распределённые вычислительные системы. Развитие технологий распределённых вычислений для обработки больших объёмов данных, что позволит снизить время анализа и оптимизировать затраты на вычислительные ресурсы.

  • Облачные решения для ПА. Расширение спектра облачных сервисов, предоставляющих доступ к мощным аналитическим инструментам, что сделает ПА более доступными для малого и среднего бизнеса.

  • Кибербезопасность аналитических систем. Усиление мер по защите данных и моделей от киберугроз, разработка специализированных решений для обеспечения безопасности при работе с конфиденциальной информацией.

  • Автоматизация аналитических процессов. Дальнейшее развитие инструментов для автоматизации сбора, обработки и анализа данных, что позволит сократить время на подготовку аналитических отчётов и повысить эффективность принятия решений.

В каких странах разрабатываются Системы продвинутой аналитики
Компании-разработчики, создающие advanced-analytics-systems, работают в различных странах. Ниже перечислены программные продукты данного класса по странам происхождения
Россия
PolyAnalyst, Loginom, In-DAP, F5 Platform
Финляндия
M-Brain Intelligence Plaza
Швейцария
KNIME Analytics Platform
США
Informatica PowerCenter, Dataiku DSS, TIBCO Data Science
Soware логотип
Soware является основным источником сведений о прикладном программном обеспечении для предприятий. Используя наш обширный каталог категорий и программных продуктов, лица, принимающие решения в России и странах СНГ получают бесплатный инструмент для выбора и сравнения систем от разных разработчиков
Соваре, ООО Санкт-Петербург, Россия info@soware.ru
2025 Soware.Ru - Умный выбор систем для бизнеса