Программные системы углубленной аналитики данных (УАД, англ. Deep Data Analysis Systems, DDA) позволяют искать неочевидные и нетривиальные связи, представления и выводы, имеющие практическое применение для решения задач бизнеса.
Классификатор программных продуктов Соваре определяет конкретные функциональные критерии для систем. Система углубленной аналитики данных должна соответствовать следующим основным функциональным критериям:
Сбор и хранение больших объемов данных из различных источников.
Анализ и обработка данных с использованием различных алгоритмов и методов, включая машинное обучение и искусственный интеллект.
Визуализация данных и предоставление аналитических отчетов и дашбордов для принятия решений.
Поддержка совместной работы и обмена данными между сотрудниками в рамках организации.

Megaputer PolyAnalyst — это российская low-code платформа визуальной разработки сценариев анализа данных и текстовых документов, а также построения интерактивных отчётов, не требующая навыков программирования. Программный продукт PolyAnalyst (рус. Полианалист) от компании Мегапьютер предназначен для анализа структурированных и неструктурированных д ... Узнать больше про PolyAnalyst

Loginom — это аналитическая low-code платформа, обеспечивающая интеграцию, очистку и анализ данных для принятия более эффективных управленческих решений. Программный продукт Loginom (рус. Лоджином) от компании Loginom company (ООО «Аналитические технологии») предназначен для анализа и обработки бизнес-данных на базе методов визуального проектирован ... Узнать больше про Loginom

TIBCO Data Science — это комплексная аналитическая платформа, позволяющая применять полный комплекс современных аналитических методов над деловыми данными компании. Узнать больше про TIBCO Data Science

Dataiku Data Science Studio — это система анализа данных для различных компаний, независимо от их опыта, отрасли или размера, стремящихся создать стратегические преимущества бизнеса, основанные на данных. Узнать больше про Dataiku DSS

RapidMiner — это платформа анализа данных, позволяющая развёртывать прогнозные модели, модели машинного обучения и эффективная при решении разнообразных аналитических задач. Узнать больше про RapidMiner

SAS Enterprise Miner — это платформа для оптимизации процесса интеллектуального анализа данных при разработке описательных и прогнозных моделей с использованием структурированных алгоритмов и визуальных показателей оценки. Узнать больше про SAS Enterprise Miner

NodeXL — это программное дополнение для программы Excel, позволяющее строить, анализировать и исследовать сетевые модели так же не сложно, как стандартные круговые диаграммы. Узнать больше про NodeXL

NVivo — это аналитическая система, помогающая извлекать полезные знания из данных, получая четко формулировать обоснованные выводы со строгими доказательствами. Узнать больше про NVivo

Аналитическая система Orange — это программа с открытым исходным кодом для машинного обучения и визуализации данных, обладающая большим набором исследовательских функций. Узнать больше про Orange

Polymatica — это аналитическая платформа для анализа больших объёмов данных в интерактивном режиме. Используется как самостоятельная система и как часть комплексного решения, обеспечивая быструю обработку данных и ad-hoc аналитику. Узнать больше про Polymatica

F5 Platform — это платформа построения и исполнения бизнес-приложений по анализу данных с использованием алгоритмов машинного обучения. Система направлена на ускорение разработки прикладных приложений, повышение эффективности и культуры бизнес-процессов организации. Узнать больше про F5 Platform

Gephi — это программное обеспечение визуализации и исследования данных с открытым исходным кодом, специализирующееся на графах и сетях больнишства видов. Узнать больше про Gephi

In-DAP - платформа поддержки принятия управленческих решений, позволяющая при помощи инструментов Models, Indicators и Prisma разрабатывать аналитические модели и работать с показателями деятельности компании, в том числе по информационной безопасности. Узнать больше про In-DAP

KNIME Analytics Platform — это программная платформа анализа, интеграции данных и подготовки отчётности с открытым исходным кодом. Узнать больше про KNIME Analytics Platform

M-Brain Intelligence Plaza — это ИТ-платформа для управления потоками информации о рынках и конкурентах для отделов аналитики, продаж, маркетинга, менеджмента. Хранение в облаке, структурирование и внутрикорпоративная рассылка информации по темам, как: отрасли, компании ... Узнать больше про M-Brain Intelligence Plaza

Deductor — это программная платформа продвинутой аналитики, позволявшая создавать законченные прикладные аналитические решения для бизнеса. Продукт снят с продажи. Узнать больше про Deductor

МТС Анализ геоданных — это ранее предоставлявшийся сервис с точными данными об инфраструктуре городов и плотности населения, позволяющий выбирать локации для бизнеса, оценивать окружение при аренде коммерческой недвижимости, прогнозировать проходимость и оборот торговой ... Узнать больше про МТС Анализ геоданных
Программные системы углубленной аналитики данных (УАД, англ. Deep Data Analysis Systems, DDA) позволяют искать неочевидные и нетривиальные связи, представления и выводы, имеющие практическое применение для решения задач бизнеса.
Углубленная аналитика данных - это бизнес-процесс, который относится к анализу больших объемов данных с целью получения полезной информации. Процесс включает в себя различные методы и технологии для исследования, извлечения и интерпретации данных, с целью выявления скрытых связей, тенденций (трендов) и паттернов, которые могут помочь бизнесу принимать более обоснованные решения.
В рамках бизнес-процесса углубленной аналитики данных могут использоваться такие технологии, как машинное обучение, глубокое обучение, статистический анализ и визуализация данных.
Для лучшего понимания функций, решаемых задач, преимуществ и возможностей систем категории, рекомендуем ознакомление с образцовыми примерами таких программных продуктов:

Системы углубленной аналитики данных предназначены для извлечения ценной информации из больших объемов данных, которые могут быть переработаны в полезный бизнес-контекст. Они позволяют анализировать данные на основе различных критериев, включая тренды, показатели и паттерны, и предоставляют бизнес-пользователям ценную информацию, которая помогает им принимать стратегические и операционные решения.
Системы углубленной аналитики данных также помогают управляющим и аналитикам не только понимать прошлое, но и прогнозировать будущее бизнеса, что делает их более производительными и конкурентоспособными.
Системы углублённой аналитики данных в основном используют следующие группы пользователей:
На основе своего экспертного мнения Соваре рекомендует наиболее внимательно подходить к выбору решения. При выборе программного продукта из функционального класса систем углублённой аналитики данных (УАД) необходимо учитывать ряд ключевых факторов, которые определят пригодность системы для решения конкретных бизнес-задач. Прежде всего, следует проанализировать масштаб деятельности компании: для малого и среднего бизнеса могут подойти более простые и гибкие решения с базовым набором аналитических инструментов, в то время как крупным корпорациям потребуются масштабируемые системы с высокой производительностью и возможностью обработки больших объёмов данных. Также важно учитывать отраслевые требования и специфику бизнеса — например, в финансовом секторе система должна поддерживать сложные математические модели и соответствовать нормативным требованиям по защите данных, а в розничной торговле акцент может быть сделан на анализе потребительских предпочтений и оптимизации запасов. Не менее значимы технические ограничения, включая существующую ИТ-инфраструктуру, совместимость с другими системами, требования к аппаратным ресурсам и сетевым возможностям. Кроме того, стоит обратить внимание на функциональность системы в части предобработки данных, методов машинного обучения, возможностей визуализации результатов и генерации отчётов.
Ключевые аспекты при принятии решения:
После анализа перечисленных факторов можно сформировать перечень критериев, которые лягут в основу технического задания для выбора системы УАД. Важно также предусмотреть этап пилотного внедрения или тестирования системы на ограниченном объёме данных, чтобы оценить её эффективность и удобство использования в реальных условиях работы компании. Кроме того, стоит обратить внимание на репутацию разработчика и наличие успешных кейсов внедрения системы в компаниях со схожей отраслевой и масштабной спецификой.
Система углубленной аналитики данных предоставляет уникальную возможность преобразовать большие данные в ценную информацию для рассматриваемой предметной области, что помогает выявлять закономерности, принимать основанные на фактах решения и повышать эффективность их деятельности.
В работе бизнеса применение программной системы углубленной аналитики данных может иметь ряд полезных эффектов, включая:
Улучшение бизнес процессов и принятие эффективных решений по оптимизации расходов.
Увеличение эффективности маркетинговых кампаний и увеличение прибыли.
Улучшение качества обслуживания клиентов и увеличение удовлетворенности клиентов.
Оптимизация ресурсов компании и принятие рациональных решений.
Автоматизация процессов сбора и анализа данных, что позволяет экономить время.
Раскрытие потенциала и ценности данных и использование их для принятия стратегических решений.
Ускорение процесса принятия решений и повышение точности прогнозирования.
Классификатор программных продуктов Соваре определяет конкретные функциональные критерии для систем. Система углубленной аналитики данных должна соответствовать следующим основным функциональным критериям:
Сбор и хранение больших объемов данных из различных источников.
Анализ и обработка данных с использованием различных алгоритмов и методов, включая машинное обучение и искусственный интеллект.
Визуализация данных и предоставление аналитических отчетов и дашбордов для принятия решений.
Поддержка совместной работы и обмена данными между сотрудниками в рамках организации.
По экспертным прогнозам Soware, в 2026 году на рынке систем углублённой аналитики данных (УАД) продолжат развиваться тенденции, направленные на повышение эффективности анализа данных и расширение возможностей их применения в бизнесе, при этом особое внимание будет уделяться интеграции новых технологий и улучшению безопасности. Среди основных трендов можно выделить:
Развитие генеративных моделей. Углублённое использование генеративных моделей и методов искусственного интеллекта для создания новых данных и сценариев, что позволит улучшить прогнозирование и моделирование бизнес-процессов.
Интеграция с инструментами больших данных. Более тесная связка УАД с системами обработки больших данных (Big Data) для анализа колоссальных объёмов информации в реальном времени и получения оперативных аналитических выводов.
Применение квантовых вычислений. Начало внедрения элементов квантовых вычислений для решения особо сложных аналитических задач, что существенно ускорит обработку данных и повысит точность прогнозов.
Расширение использования федеративного обучения. Развитие технологий федеративного обучения, позволяющих анализировать данные без их централизации, что повысит уровень конфиденциальности и безопасности информации.
Автоматизация принятия решений. Дальнейшее развитие систем, способных на основе анализа данных автоматически формировать рекомендации и принимать решения в заданных рамках, что минимизирует человеческий фактор и ускорит бизнес-процессы.
Улучшение интерфейсов пользовательского взаимодействия. Разработка более интуитивно понятных и функциональных интерфейсов для работы с УАД, что сделает аналитические инструменты доступными для пользователей с разным уровнем технической подготовки.
Развитие гибридных облачных решений. Появление гибридных облачных платформ, объединяющих преимущества частных и публичных облаков, что обеспечит баланс между доступностью, масштабируемостью и безопасностью аналитических систем.
Мегапьютер Интеллидженс

Megaputer PolyAnalyst — это российская low-code платформа визуальной разработки сценариев анализа данных и текстовых документов, а также построения интерактивных отчётов, не требующая навыков программирования. Программный продукт PolyAnalyst (рус. Полианалист) от компании Мегапьютер предназначен для анализа структурированных и неструктурированных данных на высокопрофессиональном промышленном уровне. Система включает набор ...
Аналитические технологии

Loginom — это аналитическая low-code платформа, обеспечивающая интеграцию, очистку и анализ данных для принятия более эффективных управленческих решений. Программный продукт Loginom (рус. Лоджином) от компании Loginom company (ООО «Аналитические технологии») предназначен для анализа и обработки бизнес-данных на базе методов визуального проектирования, является универсальным конструктором с набором готовых компонентов. Дел ...
TIBCO

TIBCO Data Science — это комплексная аналитическая платформа, позволяющая применять полный комплекс современных аналитических методов над деловыми данными компании.
Dataiku

Dataiku Data Science Studio — это система анализа данных для различных компаний, независимо от их опыта, отрасли или размера, стремящихся создать стратегические преимущества бизнеса, основанные на данных.
RapidMiner

RapidMiner — это платформа анализа данных, позволяющая развёртывать прогнозные модели, модели машинного обучения и эффективная при решении разнообразных аналитических задач.
SAS

SAS Enterprise Miner — это платформа для оптимизации процесса интеллектуального анализа данных при разработке описательных и прогнозных моделей с использованием структурированных алгоритмов и визуальных показателей оценки.
Social Media Research Foundation

NodeXL — это программное дополнение для программы Excel, позволяющее строить, анализировать и исследовать сетевые модели так же не сложно, как стандартные круговые диаграммы.
QSR International

NVivo — это аналитическая система, помогающая извлекать полезные знания из данных, получая четко формулировать обоснованные выводы со строгими доказательствами.
Люблянский университет

Аналитическая система Orange — это программа с открытым исходным кодом для машинного обучения и визуализации данных, обладающая большим набором исследовательских функций.
Полиматика Рус

Polymatica — это аналитическая платформа для анализа больших объёмов данных в интерактивном режиме. Используется как самостоятельная система и как часть комплексного решения, обеспечивая быструю обработку данных и ad-hoc аналитику.
М5

F5 Platform — это платформа построения и исполнения бизнес-приложений по анализу данных с использованием алгоритмов машинного обучения. Система направлена на ускорение разработки прикладных приложений, повышение эффективности и культуры бизнес-процессов организации.
The Gephi Consortium

Gephi — это программное обеспечение визуализации и исследования данных с открытым исходным кодом, специализирующееся на графах и сетях больнишства видов.
Innostage Центр Разработок

In-DAP - платформа поддержки принятия управленческих решений, позволяющая при помощи инструментов Models, Indicators и Prisma разрабатывать аналитические модели и работать с показателями деятельности компании, в том числе по информационной безопасности.
KNIME

KNIME Analytics Platform — это программная платформа анализа, интеграции данных и подготовки отчётности с открытым исходным кодом.
M-Brain

M-Brain Intelligence Plaza — это ИТ-платформа для управления потоками информации о рынках и конкурентах для отделов аналитики, продаж, маркетинга, менеджмента. Хранение в облаке, структурирование и внутрикорпоративная рассылка информации по темам, как: отрасли, компании и другим.
Аналитические технологии

Deductor — это программная платформа продвинутой аналитики, позволявшая создавать законченные прикладные аналитические решения для бизнеса. Продукт снят с продажи.
МТС

МТС Анализ геоданных — это ранее предоставлявшийся сервис с точными данными об инфраструктуре городов и плотности населения, позволяющий выбирать локации для бизнеса, оценивать окружение при аренде коммерческой недвижимости, прогнозировать проходимость и оборот торговой точки.
Программные системы углубленной аналитики данных (УАД, англ. Deep Data Analysis Systems, DDA) позволяют искать неочевидные и нетривиальные связи, представления и выводы, имеющие практическое применение для решения задач бизнеса.
Углубленная аналитика данных - это бизнес-процесс, который относится к анализу больших объемов данных с целью получения полезной информации. Процесс включает в себя различные методы и технологии для исследования, извлечения и интерпретации данных, с целью выявления скрытых связей, тенденций (трендов) и паттернов, которые могут помочь бизнесу принимать более обоснованные решения.
В рамках бизнес-процесса углубленной аналитики данных могут использоваться такие технологии, как машинное обучение, глубокое обучение, статистический анализ и визуализация данных.
Для лучшего понимания функций, решаемых задач, преимуществ и возможностей систем категории, рекомендуем ознакомление с образцовыми примерами таких программных продуктов:

Системы углубленной аналитики данных предназначены для извлечения ценной информации из больших объемов данных, которые могут быть переработаны в полезный бизнес-контекст. Они позволяют анализировать данные на основе различных критериев, включая тренды, показатели и паттерны, и предоставляют бизнес-пользователям ценную информацию, которая помогает им принимать стратегические и операционные решения.
Системы углубленной аналитики данных также помогают управляющим и аналитикам не только понимать прошлое, но и прогнозировать будущее бизнеса, что делает их более производительными и конкурентоспособными.
Системы углублённой аналитики данных в основном используют следующие группы пользователей:
На основе своего экспертного мнения Соваре рекомендует наиболее внимательно подходить к выбору решения. При выборе программного продукта из функционального класса систем углублённой аналитики данных (УАД) необходимо учитывать ряд ключевых факторов, которые определят пригодность системы для решения конкретных бизнес-задач. Прежде всего, следует проанализировать масштаб деятельности компании: для малого и среднего бизнеса могут подойти более простые и гибкие решения с базовым набором аналитических инструментов, в то время как крупным корпорациям потребуются масштабируемые системы с высокой производительностью и возможностью обработки больших объёмов данных. Также важно учитывать отраслевые требования и специфику бизнеса — например, в финансовом секторе система должна поддерживать сложные математические модели и соответствовать нормативным требованиям по защите данных, а в розничной торговле акцент может быть сделан на анализе потребительских предпочтений и оптимизации запасов. Не менее значимы технические ограничения, включая существующую ИТ-инфраструктуру, совместимость с другими системами, требования к аппаратным ресурсам и сетевым возможностям. Кроме того, стоит обратить внимание на функциональность системы в части предобработки данных, методов машинного обучения, возможностей визуализации результатов и генерации отчётов.
Ключевые аспекты при принятии решения:
После анализа перечисленных факторов можно сформировать перечень критериев, которые лягут в основу технического задания для выбора системы УАД. Важно также предусмотреть этап пилотного внедрения или тестирования системы на ограниченном объёме данных, чтобы оценить её эффективность и удобство использования в реальных условиях работы компании. Кроме того, стоит обратить внимание на репутацию разработчика и наличие успешных кейсов внедрения системы в компаниях со схожей отраслевой и масштабной спецификой.
Система углубленной аналитики данных предоставляет уникальную возможность преобразовать большие данные в ценную информацию для рассматриваемой предметной области, что помогает выявлять закономерности, принимать основанные на фактах решения и повышать эффективность их деятельности.
В работе бизнеса применение программной системы углубленной аналитики данных может иметь ряд полезных эффектов, включая:
Улучшение бизнес процессов и принятие эффективных решений по оптимизации расходов.
Увеличение эффективности маркетинговых кампаний и увеличение прибыли.
Улучшение качества обслуживания клиентов и увеличение удовлетворенности клиентов.
Оптимизация ресурсов компании и принятие рациональных решений.
Автоматизация процессов сбора и анализа данных, что позволяет экономить время.
Раскрытие потенциала и ценности данных и использование их для принятия стратегических решений.
Ускорение процесса принятия решений и повышение точности прогнозирования.
Классификатор программных продуктов Соваре определяет конкретные функциональные критерии для систем. Система углубленной аналитики данных должна соответствовать следующим основным функциональным критериям:
Сбор и хранение больших объемов данных из различных источников.
Анализ и обработка данных с использованием различных алгоритмов и методов, включая машинное обучение и искусственный интеллект.
Визуализация данных и предоставление аналитических отчетов и дашбордов для принятия решений.
Поддержка совместной работы и обмена данными между сотрудниками в рамках организации.
По экспертным прогнозам Soware, в 2026 году на рынке систем углублённой аналитики данных (УАД) продолжат развиваться тенденции, направленные на повышение эффективности анализа данных и расширение возможностей их применения в бизнесе, при этом особое внимание будет уделяться интеграции новых технологий и улучшению безопасности. Среди основных трендов можно выделить:
Развитие генеративных моделей. Углублённое использование генеративных моделей и методов искусственного интеллекта для создания новых данных и сценариев, что позволит улучшить прогнозирование и моделирование бизнес-процессов.
Интеграция с инструментами больших данных. Более тесная связка УАД с системами обработки больших данных (Big Data) для анализа колоссальных объёмов информации в реальном времени и получения оперативных аналитических выводов.
Применение квантовых вычислений. Начало внедрения элементов квантовых вычислений для решения особо сложных аналитических задач, что существенно ускорит обработку данных и повысит точность прогнозов.
Расширение использования федеративного обучения. Развитие технологий федеративного обучения, позволяющих анализировать данные без их централизации, что повысит уровень конфиденциальности и безопасности информации.
Автоматизация принятия решений. Дальнейшее развитие систем, способных на основе анализа данных автоматически формировать рекомендации и принимать решения в заданных рамках, что минимизирует человеческий фактор и ускорит бизнес-процессы.
Улучшение интерфейсов пользовательского взаимодействия. Разработка более интуитивно понятных и функциональных интерфейсов для работы с УАД, что сделает аналитические инструменты доступными для пользователей с разным уровнем технической подготовки.
Развитие гибридных облачных решений. Появление гибридных облачных платформ, объединяющих преимущества частных и публичных облаков, что обеспечит баланс между доступностью, масштабируемостью и безопасностью аналитических систем.