Программные системы анализа эффективности предприятия (САЭП, англ. Enterprise Performance Analysis Systems, EPA) помогают руководителям и предпринимателям принимать более обоснованные решения на основании проанализированных фактических данных.
Для того чтобы соответствовать категории систем анализа эффективности предприятия, программные продукты должны обладать следующими функциональными возможностями:
Поддержка различных методов анализа: Системы должны предоставлять инструменты для проведения финансового, операционного, стратегического и других видов анализа эффективности предприятия, используя различные методы и подходы.
Сбор и обработка данных: Программные продукты должны обеспечивать возможность сбора данных из различных источников, включая бухгалтерские системы, CRM, ERP и другие, а также их обработку и подготовку к анализу.
Создание отчётов и дашбордов: Системы должны включать инструменты для создания отчётов и дашбордов, позволяющих наглядно представлять результаты анализа эффективности предприятия, включая ключевые показатели эффективности (KPI), тренды и сравнения.
Прогнозирование и планирование: Программные продукты должны предоставлять инструменты для прогнозирования будущих показателей эффективности предприятия и планирования мероприятий по их улучшению, включая оптимизацию ресурсов и процессов.
Поддержка принятия решений: Системы должны обеспечивать поддержку принятия обоснованных управленческих решений на основе анализа данных об эффективности предприятия, включая оценку рисков и возможностей.
QlikView — это аналитическое решение для быстрой разработки высокоинтерактивных аналитических приложений и панелей мониторинга, обеспечивающих представление информации по деловым задачам. Узнать больше про QlikView
SAS Visual Analytics — это система аналитики для бизнеса, которая помогает глубже изучать данные, находить новые закономерности, создавать удобочитаемые графические представления для более детального понимания бизнеса. Узнать больше про SAS Visual Analytics
Аналитическая платформа Sisense — это комплексная платформа анализа данных, которая позволяет аналитикам, инженерам по обработке данных и разработчикам создавать аналитические приложения, обеспечивающие высокий уровень информативности для пользователей. Узнать больше про Sisense
Tableau Desktop — это система аналитики (BI), помогающая бизнесу раскрывать смысл данных, ускоряя поиск необходимых показателей. Интернет-сервис объединяет подготовку визуальных данных и аналитические инструменты для обеспечения сквозного аналитического процесса. Узнать больше про Tableau Desktop
NodeXL — это программное дополнение для программы Excel, позволяющее строить, анализировать и исследовать сетевые модели так же не сложно, как стандартные круговые диаграммы. Узнать больше про NodeXL
Informatica PowerCenter — это платформа интеграции корпоративных данных, помогающая организациям получать доступ, преобразовывать и интегрировать данные из различных систем на лету. Узнать больше про Informatica PowerCenter
Contour BI — компьютерная программа бизнес-аналитики для сбора, хранения, анализа статистических данных и подготовки бизнес-отчётности. Узнать больше про Contour BI
Data Access Studio — это комплексное BI-решение для создания отчётов и бизнес-аналитики. Узнать больше про Data Access Studio
IBM Cognos Analytics — это компонентный онлайн-сервис бизнес-аналитики (BI), обеспечивающий доступ к широкому диапазону функций для создания бизнес-отчётов, анализа данных, мониторинга событий и метрик с целью выработки эффективных бизнес-решений. Узнать больше про IBM Cognos Analytics
Microsoft Power BI — это программа бизнес-аналитики, предоставляющая аналитические сведения для принятия быстрых и обоснованных решений руководителями. Узнать больше про Microsoft Power BI
Oracle Analytics — это облачная платформа, предлагющая гибкую визуальную аналитику и инструменты анализа корпоративных данных. Узнать больше про Oracle Analytics Cloud
Oracle Business Intelligence Cloud Service — это онлайн-сервис бизнес-аналитики, направленная на улучшение качества анализа данных за счёт управления представлениями и визуализаций. Узнать больше про Oracle Business Intelligence Cloud Service
Qlik Sense — это программа для бизнес-аналитики (BI), помогающая выявить сведения, которые крайне сложно получить на основе традиционных запросов в базах данных. Узнать больше про Qlik Sense
Domo — это облачное аналитическое программное решение для управления бизнесом, к которому можно подключить множестро разнородных источников данных, включая электронные таблицы, базы данных, социальные сети и любое существующее облачное или локальное программное решение. ... Узнать больше про Domo
Google Data Studio — это бесплатное облачное приложение, позволяющее создавать интерактивные панели мониторинга и профессионально оформленные бизнес-отчёты из разнообразных источников данных. Узнать больше про Google Студия данных
InsightSquared — это платформа для аналитики и управления эффективностью продаж, которая помогает компаниям отслеживать ключевые показатели, оптимизировать процессы продаж и маркетинга, а также повышать конверсию и доходы путём предоставления детальной аналитики и визуа ... Узнать больше про InsightSquared
Tableau Public — это бесплатное программное обеспечение BI, которое позволяет подключаться к электронной таблице или файлу и создавать интерактивные визуализации данных. Узнать больше про Tableau Public
Dasheroo - программный интернет-сервис для сбора и анализа информации о ключевых показателях эффективности (KPI). Узнать больше про Dasheroo
Board — это программный продукт, предназначенный для комплексной бизнес-аналитики и управления производительностью бизнеса. Узнать больше про Board
SAS Viya — это платформа для анализа данных, обеспечивающая обработку больших объёмов информации и применение методов машинного обучения. Узнать больше про SAS Viya
SAS Visual Data Mining and Machine Learning — это комплексное решение для анализа данных и машинного обучения, предоставляющее инструменты для выявления закономерностей, прогнозирования и оптимизации бизнес-процессов на основе больших объёмов информации. Узнать больше про SAS Visual Data Mining and Machine Learning
Statsbot — это онлайн-сервис, обеспечивающий быструю аналитику для бизнеса. Система извлекает данные из различных систем-источников и предоставляет их в полном и удобном для анализа виде без затрат на программирование. Узнать больше про Statsbot
Google Charts — это облачный веб-сервис, позволяющий визуализировать данные и помогающий представлять статистику в виде круговых диаграмм, графиков, пиктограмм и других графических инструментов визуализации. Узнать больше про Google Charts
Looker — это аналитическая платформа, объединяющий бизнес-данные и бизнес-команду, позволяя каждому специалисту исследовать и понимать данные для поддержки принятия эффективных решений. Узнать больше про Looker
Posit Connect — это система бизнес-аналитики, предназначенная для работы с данными и поддержки принятия решений. Узнать больше про Posit Connect
Adobe Commerce intelligence — это система анализа данных для оптимизации бизнес-процессов и принятия управленческих решений в сфере электронной коммерции. Узнать больше про Adobe Commerce intelligence
Программные системы анализа эффективности предприятия (САЭП, англ. Enterprise Performance Analysis Systems, EPA) помогают руководителям и предпринимателям принимать более обоснованные решения на основании проанализированных фактических данных.
Анализ эффективности предприятия – это системный подход к оценке производительности и результативности операционной деятельности компании. Он включает в себя изучение всех аспектов деятельности организации, от её финансового состояния до процессов производства и управления персоналом.
Целью анализа является выявление сильных и слабых сторон предприятия, а также проблемных зон, направленность на оптимизацию их работы и улучшение качества производимой продукции или предоставляемых услуг.
В результате бизнес-процесса анализа эффективности компания может принять меры по снижению затрат, повышению эффективности, созданию конкурентоспособности и увеличению прибыли.
Системы анализа эффективности предприятия предназначены для оценки текущего состояния и потенциала развития организации, а также для выявления возможностей оптимизации её деятельности. Эти системы играют ключевую роль в управлении предприятием, обеспечивая руководство актуальной информацией о работе компании и позволяя принимать обоснованные управленческие решения.
Системы анализа эффективности предприятия охватывают широкий спектр аспектов деятельности организации, включая финансы, производство, логистику, маркетинг, управление персоналом и другие ключевые области. Они позволяют проводить комплексный анализ данных, выявлять тенденции и закономерности, а также прогнозировать будущие результаты. Благодаря использованию современных технологий и инструментов аналитики, эти системы способствуют повышению эффективности и конкурентоспособности предприятия, а также снижению рисков и неопределённости в процессе принятия решений.
Системы анализа эффективности предприятия в основном используют следующие группы пользователей:
При выборе программного продукта из класса систем анализа эффективности предприятия (САЭП) необходимо учитывать ряд ключевых факторов, которые определят пригодность системы для решения конкретных бизнес-задач. Прежде всего, следует оценить масштаб деятельности компании: для малого бизнеса могут подойти более простые и доступные решения с базовым набором функций, в то время как крупным корпорациям потребуются масштабируемые системы с широкими возможностями интеграции и аналитическими инструментами для обработки больших объёмов данных. Также важно учитывать отраслевые требования и стандарты — например, в финансовом секторе могут быть жёсткие требования к безопасности данных и соответствию регуляторным нормам, в производственной сфере — необходимость интеграции с системами ERP и MES, а в розничной торговле — возможности анализа покупательского поведения и оптимизации запасов. Не менее значимы технические ограничения, включая существующую ИТ-инфраструктуру, совместимость с другими используемыми системами, требования к производительности и надёжности. Кроме того, стоит обратить внимание на функциональность системы, такую как наличие инструментов для прогнозирования, моделирования бизнес-процессов, визуализации данных, возможности работы с Big Data и применения методов машинного обучения для анализа тенденций.
Ключевые аспекты при принятии решения:
Окончательный выбор САЭП должен базироваться на комплексном анализе всех вышеперечисленных факторов с учётом специфики бизнеса, стратегических целей и ресурсов компании. Важно также предусмотреть возможность тестирования системы перед внедрением, чтобы оценить её работоспособность и соответствие реальным бизнес-процессам, а также провести аудит потенциальных рисков, связанных с интеграцией и эксплуатацией системы в существующей ИТ-среде.
Применение Системы анализа эффективности предприятия позволяет достичь следующих полезных эффектов:
Улучшение финансовых показателей предприятия, поскольку анализ позволяет выявлять факторы, влияющие на прибыльность и эффективность бизнеса.
Увеличение эффективности управления предприятием, поскольку система предоставляет информацию о текущем состоянии предприятия, его потенциале и рисках, что позволяет управляющим выработать оптимальную стратегию развития.
Снижение рисков, связанных с принятием неверных бизнес-решений, поскольку анализ позволяет оценить последствия принимаемых решений на долгосрочную перспективу.
Улучшение контроля над бизнес-процессами, поскольку система предоставляет информацию о производительности предприятия, что помогает управляющим контролировать выполнение бизнес-планов и отслеживать выполнение задач.
Увеличение конкурентоспособности предприятия, поскольку анализ позволяет выявлять преимущества и недостатки предприятия по сравнению с конкурентами и разрабатывать стратегию, направленную на повышение конкурентоспособности.
Для того чтобы соответствовать категории систем анализа эффективности предприятия, программные продукты должны обладать следующими функциональными возможностями:
Поддержка различных методов анализа: Системы должны предоставлять инструменты для проведения финансового, операционного, стратегического и других видов анализа эффективности предприятия, используя различные методы и подходы.
Сбор и обработка данных: Программные продукты должны обеспечивать возможность сбора данных из различных источников, включая бухгалтерские системы, CRM, ERP и другие, а также их обработку и подготовку к анализу.
Создание отчётов и дашбордов: Системы должны включать инструменты для создания отчётов и дашбордов, позволяющих наглядно представлять результаты анализа эффективности предприятия, включая ключевые показатели эффективности (KPI), тренды и сравнения.
Прогнозирование и планирование: Программные продукты должны предоставлять инструменты для прогнозирования будущих показателей эффективности предприятия и планирования мероприятий по их улучшению, включая оптимизацию ресурсов и процессов.
Поддержка принятия решений: Системы должны обеспечивать поддержку принятия обоснованных управленческих решений на основе анализа данных об эффективности предприятия, включая оценку рисков и возможностей.
В 2025 году на рынке систем анализа эффективности предприятия (САЭП) можно ожидать усиления тенденций, связанных с интеграцией передовых технологий и повышением уровня автоматизации аналитических процессов. Развитие САЭП будет направлено на улучшение точности прогнозирования, упрощение взаимодействия с пользователем и расширение возможностей работы с большими объёмами данных.
Углублённый анализ больших данных. САЭП будут активнее использовать алгоритмы обработки больших данных для выявления скрытых закономерностей и тенденций, что позволит повысить точность прогнозирования и принятия решений.
Интеграция с системами машинного обучения. Внедрение моделей машинного обучения в САЭП позволит автоматизировать процесс выявления ключевых факторов, влияющих на эффективность предприятия, и разработать более точные рекомендации.
Применение технологий искусственного интеллекта. САЭП будут включать модули на базе ИИ для автоматизации анализа сложных ситуаций, моделирования сценариев развития и генерации предложений по оптимизации бизнес-процессов.
Развитие интерфейсов с естественным языком. Улучшение интерфейсов, позволяющих взаимодействовать с САЭП с помощью естественного языка, сделает системы более доступными для широкого круга пользователей и упростит процесс анализа данных.
Облачные решения и масштабируемость. Переход к облачным платформам обеспечит более гибкое масштабирование САЭП в зависимости от потребностей бизнеса и упростит доступ к аналитическим инструментам из любой точки мира.
Интеграция с IoT-устройствами. САЭП начнут активно интегрироваться с устройствами интернета вещей (IoT), что позволит собирать более детальные и актуальные данные о производственных процессах и состоянии оборудования.
Усиление функций визуализации данных. Развитие инструментов визуализации в САЭП поможет пользователям быстрее воспринимать и анализировать большие объёмы информации, улучшая тем самым качество принимаемых решений.
Qlik

QlikView — это аналитическое решение для быстрой разработки высокоинтерактивных аналитических приложений и панелей мониторинга, обеспечивающих представление информации по деловым задачам.
SAS

SAS Visual Analytics — это система аналитики для бизнеса, которая помогает глубже изучать данные, находить новые закономерности, создавать удобочитаемые графические представления для более детального понимания бизнеса.
Sisense

Аналитическая платформа Sisense — это комплексная платформа анализа данных, которая позволяет аналитикам, инженерам по обработке данных и разработчикам создавать аналитические приложения, обеспечивающие высокий уровень информативности для пользователей.
Salesforce (Tableau)
Tableau Desktop — это система аналитики (BI), помогающая бизнесу раскрывать смысл данных, ускоряя поиск необходимых показателей. Интернет-сервис объединяет подготовку визуальных данных и аналитические инструменты для обеспечения сквозного аналитического процесса.
Social Media Research Foundation

NodeXL — это программное дополнение для программы Excel, позволяющее строить, анализировать и исследовать сетевые модели так же не сложно, как стандартные круговые диаграммы.
Informatica

Informatica PowerCenter — это платформа интеграции корпоративных данных, помогающая организациям получать доступ, преобразовывать и интегрировать данные из различных систем на лету.
Contour Components

Contour BI — компьютерная программа бизнес-аналитики для сбора, хранения, анализа статистических данных и подготовки бизнес-отчётности.
ReportsNow

Data Access Studio — это комплексное BI-решение для создания отчётов и бизнес-аналитики.
IBM

IBM Cognos Analytics — это компонентный онлайн-сервис бизнес-аналитики (BI), обеспечивающий доступ к широкому диапазону функций для создания бизнес-отчётов, анализа данных, мониторинга событий и метрик с целью выработки эффективных бизнес-решений.
Microsoft Corporation

Microsoft Power BI — это программа бизнес-аналитики, предоставляющая аналитические сведения для принятия быстрых и обоснованных решений руководителями.
Oracle Corporation

Oracle Analytics — это облачная платформа, предлагющая гибкую визуальную аналитику и инструменты анализа корпоративных данных.
Oracle Corporation

Oracle Business Intelligence Cloud Service — это онлайн-сервис бизнес-аналитики, направленная на улучшение качества анализа данных за счёт управления представлениями и визуализаций.
Qlik

Qlik Sense — это программа для бизнес-аналитики (BI), помогающая выявить сведения, которые крайне сложно получить на основе традиционных запросов в базах данных.
Domo

Domo — это облачное аналитическое программное решение для управления бизнесом, к которому можно подключить множестро разнородных источников данных, включая электронные таблицы, базы данных, социальные сети и любое существующее облачное или локальное программное решение.

Google Data Studio — это бесплатное облачное приложение, позволяющее создавать интерактивные панели мониторинга и профессионально оформленные бизнес-отчёты из разнообразных источников данных.
InsightSquared

InsightSquared — это платформа для аналитики и управления эффективностью продаж, которая помогает компаниям отслеживать ключевые показатели, оптимизировать процессы продаж и маркетинга, а также повышать конверсию и доходы путём предоставления детальной аналитики и визуализации данных.
Salesforce (Tableau)
Tableau Public — это бесплатное программное обеспечение BI, которое позволяет подключаться к электронной таблице или файлу и создавать интерактивные визуализации данных.
Dasheroo

Dasheroo - программный интернет-сервис для сбора и анализа информации о ключевых показателях эффективности (KPI).
Board

Board — это программный продукт, предназначенный для комплексной бизнес-аналитики и управления производительностью бизнеса.
SAS

SAS Viya — это платформа для анализа данных, обеспечивающая обработку больших объёмов информации и применение методов машинного обучения.
SAS

SAS Visual Data Mining and Machine Learning — это комплексное решение для анализа данных и машинного обучения, предоставляющее инструменты для выявления закономерностей, прогнозирования и оптимизации бизнес-процессов на основе больших объёмов информации.
Statsbot

Statsbot — это онлайн-сервис, обеспечивающий быструю аналитику для бизнеса. Система извлекает данные из различных систем-источников и предоставляет их в полном и удобном для анализа виде без затрат на программирование.

Google Charts — это облачный веб-сервис, позволяющий визуализировать данные и помогающий представлять статистику в виде круговых диаграмм, графиков, пиктограмм и других графических инструментов визуализации.
Looker Data Sciences

Looker — это аналитическая платформа, объединяющий бизнес-данные и бизнес-команду, позволяя каждому специалисту исследовать и понимать данные для поддержки принятия эффективных решений.
Posit Software

Posit Connect — это система бизнес-аналитики, предназначенная для работы с данными и поддержки принятия решений.
Adobe

Adobe Commerce intelligence — это система анализа данных для оптимизации бизнес-процессов и принятия управленческих решений в сфере электронной коммерции.
Программные системы анализа эффективности предприятия (САЭП, англ. Enterprise Performance Analysis Systems, EPA) помогают руководителям и предпринимателям принимать более обоснованные решения на основании проанализированных фактических данных.
Анализ эффективности предприятия – это системный подход к оценке производительности и результативности операционной деятельности компании. Он включает в себя изучение всех аспектов деятельности организации, от её финансового состояния до процессов производства и управления персоналом.
Целью анализа является выявление сильных и слабых сторон предприятия, а также проблемных зон, направленность на оптимизацию их работы и улучшение качества производимой продукции или предоставляемых услуг.
В результате бизнес-процесса анализа эффективности компания может принять меры по снижению затрат, повышению эффективности, созданию конкурентоспособности и увеличению прибыли.
Системы анализа эффективности предприятия предназначены для оценки текущего состояния и потенциала развития организации, а также для выявления возможностей оптимизации её деятельности. Эти системы играют ключевую роль в управлении предприятием, обеспечивая руководство актуальной информацией о работе компании и позволяя принимать обоснованные управленческие решения.
Системы анализа эффективности предприятия охватывают широкий спектр аспектов деятельности организации, включая финансы, производство, логистику, маркетинг, управление персоналом и другие ключевые области. Они позволяют проводить комплексный анализ данных, выявлять тенденции и закономерности, а также прогнозировать будущие результаты. Благодаря использованию современных технологий и инструментов аналитики, эти системы способствуют повышению эффективности и конкурентоспособности предприятия, а также снижению рисков и неопределённости в процессе принятия решений.
Системы анализа эффективности предприятия в основном используют следующие группы пользователей:
При выборе программного продукта из класса систем анализа эффективности предприятия (САЭП) необходимо учитывать ряд ключевых факторов, которые определят пригодность системы для решения конкретных бизнес-задач. Прежде всего, следует оценить масштаб деятельности компании: для малого бизнеса могут подойти более простые и доступные решения с базовым набором функций, в то время как крупным корпорациям потребуются масштабируемые системы с широкими возможностями интеграции и аналитическими инструментами для обработки больших объёмов данных. Также важно учитывать отраслевые требования и стандарты — например, в финансовом секторе могут быть жёсткие требования к безопасности данных и соответствию регуляторным нормам, в производственной сфере — необходимость интеграции с системами ERP и MES, а в розничной торговле — возможности анализа покупательского поведения и оптимизации запасов. Не менее значимы технические ограничения, включая существующую ИТ-инфраструктуру, совместимость с другими используемыми системами, требования к производительности и надёжности. Кроме того, стоит обратить внимание на функциональность системы, такую как наличие инструментов для прогнозирования, моделирования бизнес-процессов, визуализации данных, возможности работы с Big Data и применения методов машинного обучения для анализа тенденций.
Ключевые аспекты при принятии решения:
Окончательный выбор САЭП должен базироваться на комплексном анализе всех вышеперечисленных факторов с учётом специфики бизнеса, стратегических целей и ресурсов компании. Важно также предусмотреть возможность тестирования системы перед внедрением, чтобы оценить её работоспособность и соответствие реальным бизнес-процессам, а также провести аудит потенциальных рисков, связанных с интеграцией и эксплуатацией системы в существующей ИТ-среде.
Применение Системы анализа эффективности предприятия позволяет достичь следующих полезных эффектов:
Улучшение финансовых показателей предприятия, поскольку анализ позволяет выявлять факторы, влияющие на прибыльность и эффективность бизнеса.
Увеличение эффективности управления предприятием, поскольку система предоставляет информацию о текущем состоянии предприятия, его потенциале и рисках, что позволяет управляющим выработать оптимальную стратегию развития.
Снижение рисков, связанных с принятием неверных бизнес-решений, поскольку анализ позволяет оценить последствия принимаемых решений на долгосрочную перспективу.
Улучшение контроля над бизнес-процессами, поскольку система предоставляет информацию о производительности предприятия, что помогает управляющим контролировать выполнение бизнес-планов и отслеживать выполнение задач.
Увеличение конкурентоспособности предприятия, поскольку анализ позволяет выявлять преимущества и недостатки предприятия по сравнению с конкурентами и разрабатывать стратегию, направленную на повышение конкурентоспособности.
Для того чтобы соответствовать категории систем анализа эффективности предприятия, программные продукты должны обладать следующими функциональными возможностями:
Поддержка различных методов анализа: Системы должны предоставлять инструменты для проведения финансового, операционного, стратегического и других видов анализа эффективности предприятия, используя различные методы и подходы.
Сбор и обработка данных: Программные продукты должны обеспечивать возможность сбора данных из различных источников, включая бухгалтерские системы, CRM, ERP и другие, а также их обработку и подготовку к анализу.
Создание отчётов и дашбордов: Системы должны включать инструменты для создания отчётов и дашбордов, позволяющих наглядно представлять результаты анализа эффективности предприятия, включая ключевые показатели эффективности (KPI), тренды и сравнения.
Прогнозирование и планирование: Программные продукты должны предоставлять инструменты для прогнозирования будущих показателей эффективности предприятия и планирования мероприятий по их улучшению, включая оптимизацию ресурсов и процессов.
Поддержка принятия решений: Системы должны обеспечивать поддержку принятия обоснованных управленческих решений на основе анализа данных об эффективности предприятия, включая оценку рисков и возможностей.
В 2025 году на рынке систем анализа эффективности предприятия (САЭП) можно ожидать усиления тенденций, связанных с интеграцией передовых технологий и повышением уровня автоматизации аналитических процессов. Развитие САЭП будет направлено на улучшение точности прогнозирования, упрощение взаимодействия с пользователем и расширение возможностей работы с большими объёмами данных.
Углублённый анализ больших данных. САЭП будут активнее использовать алгоритмы обработки больших данных для выявления скрытых закономерностей и тенденций, что позволит повысить точность прогнозирования и принятия решений.
Интеграция с системами машинного обучения. Внедрение моделей машинного обучения в САЭП позволит автоматизировать процесс выявления ключевых факторов, влияющих на эффективность предприятия, и разработать более точные рекомендации.
Применение технологий искусственного интеллекта. САЭП будут включать модули на базе ИИ для автоматизации анализа сложных ситуаций, моделирования сценариев развития и генерации предложений по оптимизации бизнес-процессов.
Развитие интерфейсов с естественным языком. Улучшение интерфейсов, позволяющих взаимодействовать с САЭП с помощью естественного языка, сделает системы более доступными для широкого круга пользователей и упростит процесс анализа данных.
Облачные решения и масштабируемость. Переход к облачным платформам обеспечит более гибкое масштабирование САЭП в зависимости от потребностей бизнеса и упростит доступ к аналитическим инструментам из любой точки мира.
Интеграция с IoT-устройствами. САЭП начнут активно интегрироваться с устройствами интернета вещей (IoT), что позволит собирать более детальные и актуальные данные о производственных процессах и состоянии оборудования.
Усиление функций визуализации данных. Развитие инструментов визуализации в САЭП поможет пользователям быстрее воспринимать и анализировать большие объёмы информации, улучшая тем самым качество принимаемых решений.