Логотип Soware
Логотип Soware

Системы обработки естественного языка (NLP) c функцией Отчётность и аналитика

Системы обработки естественного языка (СОЕЯ, англ. Natural language processing, NLP) помогают пользователям получать информацию как из структурированных, так и из неструктурированных текстовых данных, включая анализ настроения, ключевых фраз, языка, тем и шаблонов. Эти решения используют машинное обучение, чтобы представить данные в наиболее верной интерпретации.

В категорию обработки естественного языка (NLP) включаются программные продукты, удовлетворяющие следующим ключевым критериям:

  • Возможность импортировать текстовые данные из различных источников;
  • Способность извлекать различные данные из текста, включая ключевые фразы, язык, настроения и другие шаблоны;
  • Возможности визуализации для текстовых данных.

Сравнение Системы обработки естественного языка (NLP)

Выбрать по критериям:

Категории
Подходит для
Функции
Особенности
Тарификация
Развёртывание
Графический интерфейс
Поддержка языков
Сортировать:
Систем: 5
Логотип PolyAnalyst

PolyAnalyst от Мегапьютер Интеллидженс

PolyAnalyst – это российская low-code платформа визуальной разработки сценариев анализа данных и текстовых документов, а также построения интерактивных отчётов, не требующая навыков программирования. Программный продукт PolyAnalyst (рус. Полианалист) от компании Мегапьютер предназначен для анализа структурированных и неструктурированных данных на в ... Узнать больше про PolyAnalyst

Логотип Инлексис Голосовой бот

Инлексис Голосовой бот от Инлексис

Инлексис Голосовой бот – это интеллектуальный сервис для эффективного обзвона клиентов, позволяющий крупному бизнесу экономить миллионы рублей на сокращении операционных расходов. Программный продукт Инлексис Голосовой бот (англ. Inleksys VoiceBot) от компании Инлексис предназначен для организации автоматического голосового общения на базе современ ... Узнать больше про Инлексис Голосовой бот

Логотип IQPLATFORM

IQPLATFORM от Айкумен ИБС

IQPLATFORM – это цифровая аналитическая платформа, позволяет выполнять продвинутую аналитику на базе больших объёмов информации, синтез новых знаний и мониторинг и контроль информационных объектов. Узнать больше про IQPLATFORM

Логотип M-Brain Intelligence Plaza

M-Brain Intelligence Plaza от M-Brain

M-Brain Intelligence Plaza – это ИТ-платформа для управления потоками информации о рынках и конкурентах для отделов аналитики, продаж, маркетинга, менеджмента. Хранение в облаке, структурирование и внутрикорпоративная рассылка информации по темам, как: отрасли, компании ... Узнать больше про M-Brain Intelligence Plaza

Логотип Elasticsearch

Elasticsearch от Elastic NV

Платформа Elasticsearch – это программное обеспечение с открытым исходным кодом, предназначенное для поиска, сбора, анализа и хранения текстовых данных с использованием интеллектуальных алгоритмов. Узнать больше про Elasticsearch

Руководство по покупке Системы обработки естественного языка

1. Что такое Системы обработки естественного языка

Системы обработки естественного языка (СОЕЯ, англ. Natural language processing, NLP) помогают пользователям получать информацию как из структурированных, так и из неструктурированных текстовых данных, включая анализ настроения, ключевых фраз, языка, тем и шаблонов. Эти решения используют машинное обучение, чтобы представить данные в наиболее верной интерпретации.

2. Образцовые примеры Системы обработки естественного языка

Для лучшего понимания функций, решаемых задач, преимуществ и возможностей систем категории, рекомендуем ознакомление с образцовыми примерами таких программных продуктов:

Логотип PolyAnalyst
PolyAnalystМегапьютер ИнтеллидженсОфициальный сайт

3. Назначение и цели использования Системы обработки естественного языка

Инструменты обработки естественного языка (также называемые программами анализа текста, программами обработки текста) могут анализировать текстовые данные из различных источников, включая электронные письма, телефонные расшифровки, опросы, корпоративные хранилища документов, бизнес-архивы, отзывы клиентов и прочие документы. СОЕЯ позволяют пользователям лучше понимать и глубже анализировать настроения клиентов или сотрудников, реализовать актуальную классификацию документов и улучшить текстовый контент.

Программное обеспечение для обработки естественного языка (NLP) может использоваться в сочетании с другими инструментами аналитики, включая платформы анализа больших данных и бизнес-аналитики. Системы обработки естественного языка используются в виде компонента для программных систем медиа-аналитики и машинного перевода.

4. Обзор основных функций и возможностей Системы обработки естественного языка

Администрирование
Возможность администрирования позволяет осуществлять настройку и управление функциональностью системы, а также управление учётными записями и правами доступа к системе.
Выполнение текстовых заданий
Функция Выполнение текстовых заданий в генеративных ИИ позволяет создавать тексты, изображения и видео на основе заданных текстовых заданий, включающих спецификацию целевого результата генерации. Обычно текстовое задание представляет собой ряд ассоциативных подсказок.
Дообучение
Функция Дообучение позволяет улучшить качество работы системы ИИ или модели, обучая её на дополнительных данных со стороны пользователя. Это может быть полезно, если модель не справляется с некоторыми задачами, если требуется улучшить ее точность или обеспечить специализацию для решения узконаправленных задач. Дообучение может быть выполнено на основе новых данных или на уже имеющихся данных, которые были ранее не использованы для обучения модели.
Импорт/экспорт данных
Возможность импорта и/или экспорта данных в продукте позволяет загрузить данные из наиболее популярных файловых форматов или выгрузить рабочие данные в файл для дальнейшего использования в другом ПО.
Интеллектуальная генерация данных
Функция Интеллектуальная генерация данных позволяет создавать структурированные данные, тексты, изображения, аудио и видео. Создание структурированных данных может быть использовано для массового создания новых служебных данных, заполнения пробелов в существующих данных, а также для улучшения их качества. Создания медиа-данных (изображения, текст, видео, аудио) позволяют ускорять и оптимизировать решение задач создания контента в различных отраслях.
Интеллектуальный анализ данных
Функция Интеллектуальный анализ данных в ИИ позволяет анализировать большие объемы данных в различных формах (структурированные данные, текст, изображения, аудио, видео или смешанные данные) и извлекать из них полезную информацию. Такой анализ включает в себя распознавание закономерностей, выявление тенденций и предсказание будущих значений.
Использование шаблонов задания
Функция Использование шаблонов задания позволяет использовать стандартные параметры и шаблонированные подсказки для генерации данных. Например, можно указать тему текста, стиль написания, ключевые слова, художественный стиль картины, подражание произведениям известного автора, задать эмоциональные направления и другие параметры. Это позволяет получить более контролируемый результат и улучшить качество создаваемых данных.
Многопользовательский доступ
Возможность многопользовательской доступа в программную систему обеспечивает одновременную работу нескольких пользователей на одной базе данных под собственными учётными записями. Пользователи в этом случае могут иметь отличающиеся права доступа к данным и функциям программного обеспечения.
Наличие API
Часто при использовании современного делового программного обеспечения возникает потребность автоматической передачи данных из одного ПО в другое. Например, может быть полезно автоматически передавать данные из Системы управления взаимоотношениями с клиентами (CRM) в Систему бухгалтерского учёта (БУ). Для обеспечения такого и подобных сопряжений программные системы оснащаются специальными Прикладными программными интерфейсами (англ. API, Application Programming Interface). С помощью таких API любые компетентные программисты смогут связать два программных продукта между собой для автоматического обмена информацией.
Отчётность и аналитика
Наличие у продукта функций подготовки отчётности и/или аналитики позволяют получать систематизированные и визуализированные данные из системы для последующего анализа и принятия решений на основе данных.
Обработка видео-данных
Обработка видео-данных позволяет системе работать с информацией в форме видео-потока при помощи методов искусственного интеллекта, проводить разбор, анализ или синтез (генерацию) информации.
Обработка визуально-графических данных
Обработка визуально-графических данных позволяет извлекать и генерировать информацию в виде графических данных, классифицировать, хранить и проводить первичный разбор полученной информации, преобразовывать или создавать новые графические материалы.
Обработка голосовых данных
Обработка голосовых данных позволяет работать с голосовыми данными, такими как распознавание речи, синтез речи и обработка естественного языка. Это позволяет создать системы, которые могут понимать и отвечать на голосовые запросы, а также генерировать речь на основе текста или других входных данных.
Обработка звуковых данных
Обработка звуковых данных (аудио-анализ) позволяет извлекать полезную информацию и смысл из звуковых сигналов, классифицировать, хранить и проводить первичный разбор полученных данных, а также генерировать аудиальную информацию.
Обработка структурированных данных
Обработка структурированных данных позволяет использовать для работы данные, которые организованы в виде форматированных хранилищ, баз данных, электронных таблиц и иных структурированных форматов, в которых элементы данных имеют адресацию для более эффективной обработки и анализа.
Обработка текстовых данных
Обработка данных текста представляет собой инструментарий для работы ИИ с информацией в виде текста путём структурирования исходного текста, анализа текстовых шаблонов (паттернов), оценки смысла (семантики) текста, а также применения текстовых генеративных алгоритмов.

5. Отличительные черты Системы обработки естественного языка

В категорию обработки естественного языка (NLP) включаются программные продукты, удовлетворяющие следующим ключевым критериям:

  • Возможность импортировать текстовые данные из различных источников;
  • Способность извлекать различные данные из текста, включая ключевые фразы, язык, настроения и другие шаблоны;
  • Возможности визуализации для текстовых данных.

Сравнение Системы обработки естественного языка (NLP)

Систем: 5

PolyAnalyst

Мегапьютер Интеллидженс

Логотип системы PolyAnalyst

PolyAnalyst – это российская low-code платформа визуальной разработки сценариев анализа данных и текстовых документов, а также построения интерактивных отчётов, не требующая навыков программирования. Программный продукт PolyAnalyst (рус. Полианалист) от компании Мегапьютер предназначен для анализа структурированных и неструктурированных данных на высокопрофессиональном промышленном уровне. Система включает набор инструмен ...

Инлексис Голосовой бот

Инлексис

Логотип системы Инлексис Голосовой бот

Инлексис Голосовой бот – это интеллектуальный сервис для эффективного обзвона клиентов, позволяющий крупному бизнесу экономить миллионы рублей на сокращении операционных расходов. Программный продукт Инлексис Голосовой бот (англ. Inleksys VoiceBot) от компании Инлексис предназначен для организации автоматического голосового общения на базе современных технологий синтеза речи, машинного обучения и искусственного интеллекта ...

IQPLATFORM

Айкумен ИБС

Логотип системы IQPLATFORM

IQPLATFORM – это цифровая аналитическая платформа, позволяет выполнять продвинутую аналитику на базе больших объёмов информации, синтез новых знаний и мониторинг и контроль информационных объектов.

M-Brain Intelligence Plaza

M-Brain

Логотип системы M-Brain Intelligence Plaza

M-Brain Intelligence Plaza – это ИТ-платформа для управления потоками информации о рынках и конкурентах для отделов аналитики, продаж, маркетинга, менеджмента. Хранение в облаке, структурирование и внутрикорпоративная рассылка информации по темам, как: отрасли, компании, и др..

Elasticsearch

Elastic NV

Логотип системы Elasticsearch

Платформа Elasticsearch – это программное обеспечение с открытым исходным кодом, предназначенное для поиска, сбора, анализа и хранения текстовых данных с использованием интеллектуальных алгоритмов.

Руководство по покупке Системы обработки естественного языка

Что такое Системы обработки естественного языка

Системы обработки естественного языка (СОЕЯ, англ. Natural language processing, NLP) помогают пользователям получать информацию как из структурированных, так и из неструктурированных текстовых данных, включая анализ настроения, ключевых фраз, языка, тем и шаблонов. Эти решения используют машинное обучение, чтобы представить данные в наиболее верной интерпретации.

Образцовые примеры Системы обработки естественного языка

Для лучшего понимания функций, решаемых задач, преимуществ и возможностей систем категории, рекомендуем ознакомление с образцовыми примерами таких программных продуктов:

Логотип PolyAnalyst
PolyAnalystМегапьютер ИнтеллидженсОфициальный сайт
Назначение и цели использования Системы обработки естественного языка

Инструменты обработки естественного языка (также называемые программами анализа текста, программами обработки текста) могут анализировать текстовые данные из различных источников, включая электронные письма, телефонные расшифровки, опросы, корпоративные хранилища документов, бизнес-архивы, отзывы клиентов и прочие документы. СОЕЯ позволяют пользователям лучше понимать и глубже анализировать настроения клиентов или сотрудников, реализовать актуальную классификацию документов и улучшить текстовый контент.

Программное обеспечение для обработки естественного языка (NLP) может использоваться в сочетании с другими инструментами аналитики, включая платформы анализа больших данных и бизнес-аналитики. Системы обработки естественного языка используются в виде компонента для программных систем медиа-аналитики и машинного перевода.

Обзор основных функций и возможностей Системы обработки естественного языка
Администрирование
Возможность администрирования позволяет осуществлять настройку и управление функциональностью системы, а также управление учётными записями и правами доступа к системе.
Выполнение текстовых заданий
Функция Выполнение текстовых заданий в генеративных ИИ позволяет создавать тексты, изображения и видео на основе заданных текстовых заданий, включающих спецификацию целевого результата генерации. Обычно текстовое задание представляет собой ряд ассоциативных подсказок.
Дообучение
Функция Дообучение позволяет улучшить качество работы системы ИИ или модели, обучая её на дополнительных данных со стороны пользователя. Это может быть полезно, если модель не справляется с некоторыми задачами, если требуется улучшить ее точность или обеспечить специализацию для решения узконаправленных задач. Дообучение может быть выполнено на основе новых данных или на уже имеющихся данных, которые были ранее не использованы для обучения модели.
Импорт/экспорт данных
Возможность импорта и/или экспорта данных в продукте позволяет загрузить данные из наиболее популярных файловых форматов или выгрузить рабочие данные в файл для дальнейшего использования в другом ПО.
Интеллектуальная генерация данных
Функция Интеллектуальная генерация данных позволяет создавать структурированные данные, тексты, изображения, аудио и видео. Создание структурированных данных может быть использовано для массового создания новых служебных данных, заполнения пробелов в существующих данных, а также для улучшения их качества. Создания медиа-данных (изображения, текст, видео, аудио) позволяют ускорять и оптимизировать решение задач создания контента в различных отраслях.
Интеллектуальный анализ данных
Функция Интеллектуальный анализ данных в ИИ позволяет анализировать большие объемы данных в различных формах (структурированные данные, текст, изображения, аудио, видео или смешанные данные) и извлекать из них полезную информацию. Такой анализ включает в себя распознавание закономерностей, выявление тенденций и предсказание будущих значений.
Использование шаблонов задания
Функция Использование шаблонов задания позволяет использовать стандартные параметры и шаблонированные подсказки для генерации данных. Например, можно указать тему текста, стиль написания, ключевые слова, художественный стиль картины, подражание произведениям известного автора, задать эмоциональные направления и другие параметры. Это позволяет получить более контролируемый результат и улучшить качество создаваемых данных.
Многопользовательский доступ
Возможность многопользовательской доступа в программную систему обеспечивает одновременную работу нескольких пользователей на одной базе данных под собственными учётными записями. Пользователи в этом случае могут иметь отличающиеся права доступа к данным и функциям программного обеспечения.
Наличие API
Часто при использовании современного делового программного обеспечения возникает потребность автоматической передачи данных из одного ПО в другое. Например, может быть полезно автоматически передавать данные из Системы управления взаимоотношениями с клиентами (CRM) в Систему бухгалтерского учёта (БУ). Для обеспечения такого и подобных сопряжений программные системы оснащаются специальными Прикладными программными интерфейсами (англ. API, Application Programming Interface). С помощью таких API любые компетентные программисты смогут связать два программных продукта между собой для автоматического обмена информацией.
Отчётность и аналитика
Наличие у продукта функций подготовки отчётности и/или аналитики позволяют получать систематизированные и визуализированные данные из системы для последующего анализа и принятия решений на основе данных.
Обработка видео-данных
Обработка видео-данных позволяет системе работать с информацией в форме видео-потока при помощи методов искусственного интеллекта, проводить разбор, анализ или синтез (генерацию) информации.
Обработка визуально-графических данных
Обработка визуально-графических данных позволяет извлекать и генерировать информацию в виде графических данных, классифицировать, хранить и проводить первичный разбор полученной информации, преобразовывать или создавать новые графические материалы.
Обработка голосовых данных
Обработка голосовых данных позволяет работать с голосовыми данными, такими как распознавание речи, синтез речи и обработка естественного языка. Это позволяет создать системы, которые могут понимать и отвечать на голосовые запросы, а также генерировать речь на основе текста или других входных данных.
Обработка звуковых данных
Обработка звуковых данных (аудио-анализ) позволяет извлекать полезную информацию и смысл из звуковых сигналов, классифицировать, хранить и проводить первичный разбор полученных данных, а также генерировать аудиальную информацию.
Обработка структурированных данных
Обработка структурированных данных позволяет использовать для работы данные, которые организованы в виде форматированных хранилищ, баз данных, электронных таблиц и иных структурированных форматов, в которых элементы данных имеют адресацию для более эффективной обработки и анализа.
Обработка текстовых данных
Обработка данных текста представляет собой инструментарий для работы ИИ с информацией в виде текста путём структурирования исходного текста, анализа текстовых шаблонов (паттернов), оценки смысла (семантики) текста, а также применения текстовых генеративных алгоритмов.
Отличительные черты Системы обработки естественного языка

В категорию обработки естественного языка (NLP) включаются программные продукты, удовлетворяющие следующим ключевым критериям:

  • Возможность импортировать текстовые данные из различных источников;
  • Способность извлекать различные данные из текста, включая ключевые фразы, язык, настроения и другие шаблоны;
  • Возможности визуализации для текстовых данных.
Soware логотип
Soware является основным источником сведений о прикладном программном обеспечении для предприятий. Используя наш обширный каталог категорий и программных продуктов, лица, принимающие решения в России и странах СНГ получают бесплатный инструмент для выбора и сравнения систем от разных разработчиков
Соваре, ООО Санкт-Петербург, Россия info@soware.ru
2024 Soware.Ru - Умный выбор систем для бизнеса