Логотип Soware
Логотип Soware

Северо-Американские (США) Системы анализа данных (САД)

Программное обеспечение для анализа данных - это решения, обеспечивающие обработку различных бизнес-данных. Такие системы и сервисы позволяют выделять ключевые особенности изучаемого объекта или процесса для пользователя, а также обнаруживать новые возможности продукта, маркетинговые сегменты, отраслевые вертикали и многое другое.

Для включения в категорию анализа данных программное обеспечение должно удовлетворять следующим критериям:

  • Извлечение структурированных, плохо структурированных и неструктурированных данных;
  • Извлечение данных из различных источников;
  • Экспорт извлеченных данных в различные читаемые форматы.

Сравнение Системы анализа данных (САД)

Выбрать по критериям:

Категории
Подходит для
Функции
Особенности
Тарификация
Развёртывание
Графический интерфейс
Поддержка языков
Сортировать:
Систем: 27
Логотип SAS Enterprise Miner

SAS Enterprise Miner от SAS

SAS Enterprise Miner – это платформа для оптимизации процесса интеллектуального анализа данных при разработке описательных и прогнозных моделей с использованием структурированных алгоритмов и визуальных показателей оценки. Узнать больше про SAS Enterprise Miner

Логотип QlikView

QlikView от Qlik

QlikView – это аналитическое решение для быстрой разработки высокоинтерактивных аналитических приложений и панелей мониторинга, обеспечивающих представление информации по деловым задачам. Узнать больше про QlikView

Логотип RapidMiner

RapidMiner от RapidMiner

RapidMiner – это платформа анализа данных, позволяющая развёртывать прогнозные модели, модели машинного обучения и эффективная при решении разнообразных аналитических задач. Узнать больше про RapidMiner

Логотип Dataiku DSS

Dataiku DSS от Dataiku

Dataiku Data Science Studio – это система анализа данных для различных компаний, независимо от их опыта, отрасли или размера, стремящихся создать стратегические преимущества бизнеса, основанные на данных.. Узнать больше про Dataiku DSS

Логотип NVivo

NVivo от QSR International

NVivo – это аналитическая система, помогающая извлекать полезные знания из данных, получая четко формулировать обоснованные выводы со строгими доказательствами. Узнать больше про NVivo

Логотип Stata

Stata от StataCorp

Stata – это полноценное интегрированное программное решение, обеспечивающее все потребности в области науки о данных — манипулирование данными, визуализацию, статистический анализ и автоматизированную отчётность. Узнать больше про Stata

Логотип IBM SPSS Statistics

IBM SPSS Statistics от IBM

IBM SPSS Statistics – это аналитическое программное обеспечение, позволяющее производить продвинутый статистический анализ деловых данных, охватывая решение всех задач от планирования и сбора данных до непосредственного анализа и построения бизнес-отчётности. Узнать больше про IBM SPSS Statistics

Логотип TIBCO Data Science

TIBCO Data Science от TIBCO

TIBCO Data Science – это комплексная аналитическая платформа, позволяющая применять полный комплекс современных аналитических методов над деловыми данными компании. Узнать больше про TIBCO Data Science

Логотип Anaconda

Anaconda от Anaconda

Anaconda – это платформа управления пакетами приложений анализа данных (для языков Python и R) с открытым исходным кодом. Система позволяет специалистам по обработке данных быстро разворачивать проекты машинного обучения, предоставляя необходимую информацию для лиц, при ... Узнать больше про Anaconda

Логотип NodeXL

NodeXL от Social Media Research Foundation

NodeXL – это программное дополнение для программы Excel, позволяющее строить, анализировать и исследовать сетевые модели так же не сложно, как стандартные круговые диаграммы. Узнать больше про NodeXL

Логотип Informatica PowerCenter

Informatica PowerCenter от Informatica

Informatica PowerCenter – это платформа интеграции корпоративных данных, помогающая организациям получать доступ, преобразовывать и интегрировать данные из различных систем на лету. Узнать больше про Informatica PowerCenter

Логотип Qlik Sense

Qlik Sense от Qlik

Qlik Sense – это программа для бизнес-аналитики (BI), помогающая выявить сведения, которые крайне сложно получить на основе традиционных запросов в базах данных. Узнать больше про Qlik Sense

Логотип Oracle Business Intelligence Cloud Service

Oracle Business Intelligence Cloud Service от Oracle Corporation

Oracle Business Intelligence Cloud Service – это онлайн-сервис бизнес-аналитики, направленная на улучшение качества анализа данных за счёт управления представлениями и визуализаций. Узнать больше про Oracle Business Intelligence Cloud Service

Логотип SAS Visual Analytics

SAS Visual Analytics от SAS

SAS Visual Analytics – это система аналитики для бизнеса, которая помогает глубже изучать данные, находить новые закономерности, создавать удобочитаемые графические представления для более детального понимания бизнеса. Узнать больше про SAS Visual Analytics

Логотип IBM Cognos Analytics

IBM Cognos Analytics от IBM

IBM Cognos Analytics – это компонентный онлайн-сервис бизнес-аналитики (BI), обеспечивающий доступ к широкому диапазону функций для создания бизнес-отчётов, анализа данных, мониторинга событий и метрик с целью выработки эффективных бизнес-решений. Узнать больше про IBM Cognos Analytics

Логотип Contour BI

Contour BI от Contour Components

Contour BI – компьютерная программа бизнес-аналитики для сбора, хранения, анализа статистических данных и подготовки бизнес-отчётности. Узнать больше про Contour BI

Логотип Sisense

Sisense от Sisense

Аналитическая платформа Sisense – это комплексная платформа анализа данных, которая позволяет аналитикам, инженерам по обработке данных и разработчикам создавать аналитические приложения, обеспечивающие высокий уровень информативности для пользователей. Узнать больше про Sisense

Логотип InsightSquared

InsightSquared от InsightSquared

InsightSquared - программный продукт, предназначенный для сбора, обработки, хранения данных и их визуализации. Узнать больше про InsightSquared

Логотип Tableau Public

Tableau Public от Tableau Software

Tableau Public – это бесплатное программное обеспечение BI, которое позволяет подключаться к электронной таблице или файлу и создавать интерактивные визуализации данных. Узнать больше про Tableau Public

Логотип Board

Board от Board

Board – это программный продукт, предназначенный для комплексной бизнес-аналитики и управления производительностью бизнеса. Узнать больше про Board

Логотип Logi Predict

Logi Predict от Logi Analytics

Logi Predict – это аналитическое приложение, позволяющее анализировать информацию и прогнозировать вариантов возможных событий, обеспечиввая тем самым возможность встроить алгоритмы машинного обучения и прогностические модели в любой программный продукт. Узнать больше про Logi Predict

Логотип Pentaho

Pentaho от Hitachi Vantara

Платформа Pentaho – это программный продукт, позволяющий извлекать, объединять, трансформировать, смешивать, очищать и подготавливать большие данные в виде потоковой модели из различных обработчиков. Узнать больше про Pentaho

Логотип Looker

Looker от Looker Data Sciences

Looker – это аналитическая платформа, объединяющий бизнес-данные и бизнес-команду, позволяя каждому специалисту исследовать и понимать данные для поддержки принятия эффективных решений. Узнать больше про Looker

Логотип Statsbot

Statsbot от Statsbot

Statsbot – это онлайн-сервис, обеспечивающий быструю аналитику для бизнеса. Система извлекает данные из различных систем-источников и предоставляет их в полном и удобном для анализа виде без затрат на программирование. Узнать больше про Statsbot

Руководство по покупке Системы анализа данных

1. Что такое Системы анализа данных

Программное обеспечение для анализа данных - это решения, обеспечивающие обработку различных бизнес-данных. Такие системы и сервисы позволяют выделять ключевые особенности изучаемого объекта или процесса для пользователя, а также обнаруживать новые возможности продукта, маркетинговые сегменты, отраслевые вертикали и многое другое.

2. Зачем бизнесу Системы анализа данных

Анализ данных определяется как процесс автоматизированного/автоматического сбора, очистки, преобразования и моделирования данных для обнаружения полезной информации и принятия управленческих бизнес-решений. Всякий раз, когда принимается очередное деловое решение в повседневной жизни, мы думаем, что произошло в прошлый раз, что будет происходить в дальнейшем. На основании истории и прогноза, ищется и выбирается конкретное решение. Рассмотренный пример - не что иное, как анализ нашего прошлого или будущего и принятие решений на его основе.

Для выполнения анализа могут быть собраны воспоминания о прошлом или планы на будущее, что тоже есть не что иное, как сбор и обработка данных. Все эти операции анализа данных в современный век развития информационных технологий могут выполняться с применением специализированного программного обеспечения - систем анализа данных, и с использованием дополнительных источников данных, открытых баз данных, баз знаний и т.п. В целом, данный процесс, выполняемый аналитиком, руководителем или предпринимателем для отдельно взятой бизнес-цели, называется анализом данных.

Анализ данных может быть направлен на достижение различных целей, стоящих перед бизнесом, и иметь различную глубину разработки вопроса:

  • Описательный анализ – описание процесса КАК ЕСТЬ. Фактическое изложение процесса и проблем, которые необходимо решить. Возможность использования формализованных моделей для передачи знаний между сотрудниками во всю широту компании.

  • Диагностический анализ – выявление первопричин проблем. Глубокий и детализированный аналитический подход, использующий методы интеллектуального анализа данных для выявления контекста и первопричин бизнес-проблемы.

  • Прогностический анализ - прогнозирование на основе исторических данных того, как может развиваться ситуация. Методы, называемые также расширенной аналитикой, используют интеллектуальный анализ данных, машинное обучение и прогнозное моделирование сценариев.

  • Прескриптивный анализ – формирование видения последующих действий. Используя как исторические данные, так и внешнюю информацию, продукт анализа данных может обеспечить расчет необходимых показателей для выстраивания следующих шагов, которые бизнес должен предпринять для решения заявленных проблем.

3. Назначение и цели использования Системы анализа данных

Системы анализа данных (АД, англ. Data Analysis Systems, DA) позволяют исследовать различные наборы данных, для обнаружения закономерностей, тенденций, корреляций и получения прочих полезных выводов, которые в дальнейшем могут быть использованы при принятии решений, построении прогнозов, планировании, управлении различными объектами и протекающими в них процессами. Программные продукты анализа данных помогают преобразовать сырые данные в работающие идеи, помогая компаниям принимать более обоснованные решения и улучшать ежедневные операции.

При старте работ по анализу данных необходимо в первую очередь определить цели, на основании которых можно формировать требуемые актуальные наборы данных. Для аналитического исследования могут использоваться внутренние (CRM, ERP-системы, инструменты автоматизации маркетинга и другие) и внешние данные, структурированные, полуструктурированные и неструктурированные.

Программное обеспечения аналитики данных должно позволять хранить информацию, полученную из множества источников. Для проведения качественного анализа данных, программные продукты данной категории должны иметь встроенные настраиваемые инструменты по «очистке» данных: удалять дубликаты, выявлять аномалии и несоответствия. Следующим этапом анализа является работа с данными, применение на получаемой выборке методов интеллектуального анализа, поточного анализа и пр.Заключительным этапом является интерпретация результатов анализа данных, которая должна подтвердить или опровергнуть выдвинутые изначально гипотезы, привести разбирающегося в предметной области специалиста или руководителя к конкретным выводам и управленческим решениям.

4. Обзор основных функций и возможностей Системы анализа данных

Администрирование
Возможность администрирования позволяет осуществлять настройку и управление функциональностью системы, а также управление учётными записями и правами доступа к системе.
Анализ больших данных
Функции Анализа больших данных (англ. Big Data Analysis, BDA) реализуют поддержку очень больших наборов данных для исследования предметной области, построения сложных моделей обработки данных и выявления неявных тенденций
Визуализация данных
Функции Визуализация данных позволяет пользователям выявлять причинно-следственные связи событий, формировать гипотезы или проверять идеи на основании визуального анализа данных
Импорт/экспорт данных
Возможность импорта и/или экспорта данных в продукте позволяет загрузить данные из наиболее популярных файловых форматов или выгрузить рабочие данные в файл для дальнейшего использования в другом ПО.
Индикация трендов и проблем
Функции Индикации трендов и проблем позволяют пользователям настроить автоматическое определение интересующих событий исходя из набора признаков и факторов
Интеллектуальный анализ данных (ИАД)
Функции Интеллектуального анализа данных (ИАД, англ Data Mining, DM) реализуют поиск неочевидных закономерностей, тенденций или извлечения иной информации из больших наборов данных с помощью графических или других инструментов
Машинное обучение
Функции Машинного обучения (англ. Machine Learning, ML) позволяют использовать для решения поставленных задач обучающиеся алгоритмы, проводя исследования на множестве аналогичных заданий, для полной или частичной автоматизации процессов принятия решений, управления рисками и т.д.
Многопользовательский доступ
Возможность многопользовательской доступа в программную систему обеспечивает одновременную работу нескольких пользователей на одной базе данных под собственными учётными записями. Пользователи в этом случае могут иметь отличающиеся права доступа к данным и функциям программного обеспечения.
Наличие API
Часто при использовании современного делового программного обеспечения возникает потребность автоматической передачи данных из одного ПО в другое. Например, может быть полезно автоматически передавать данные из Системы управления взаимоотношениями с клиентами (CRM) в Систему бухгалтерского учёта (БУ). Для обеспечения такого и подобных сопряжений программные системы оснащаются специальными Прикладными программными интерфейсами (англ. API, Application Programming Interface). С помощью таких API любые компетентные программисты смогут связать два программных продукта между собой для автоматического обмена информацией.
Отчётность и аналитика
Наличие у продукта функций подготовки отчётности и/или аналитики позволяют получать систематизированные и визуализированные данные из системы для последующего анализа и принятия решений на основе данных.
Потоковая аналитика
Функции Потоковой аналитики данных позволяют «на лету» применять аналитические алгоритмы над данными в режиме реального времени для отслеживания ключевых показателей бизнес-процессов
Прогнозирование и предсказательная аналитика
Функции Прогнозирования и Предсказательной аналитики позволяют пользователям составлять прогнозы предстоящих затрат, продаж, доходов и иных событий на основании прошлых данных с использованием различных статистических методов прогнозирования
Статистический анализ
Функции Статистического анализа дают пользователю инструментарий по математической организации данных, их исследованию, математической интерпретации и представлении данных, а также о выявлении регулярных закономерностей и тенденций
Интерактивная аналитическая обработка (OLAP)
Интерактивная аналитическая обработка (англ. OLAP) позволяет пользователям в реальном времени (онлайн) оперативно получать агрегированную информацию на основе больших массивов данных
Коннекторы для источников данных
Коннекторы для источников данных подразумевает либо преднастроенную интеграцию со сторонними источниками данных, либо возможность настройки данного взаимодействия на основе гибкого прикладного программного интерфейса (англ. Application Programming Interface, API)

5. Выгоды, преимущества и польза от применения Системы анализа данных

Основные преимущества, которые компания может получить, выполняя анализ данных являются:

  • Прогнозирование потребностей - благодаря проанализированным данным организация сможет понять потребности клиентов. Данные могут служить лучшему удовлетворению клиентских потребностей, обеспечивая долгосрочные отношения, предвосхищая правильные потребности.

  • Предоставление соответствующих продуктов/услуг - с помощью структурированных данных о продажах можно выявить критические тенденции рынка. В соответствии с тенденциями вы можете определить, какой клиент любит какой тип продукта или услуги. Предвидя потребности клиентов и их симпатии и антипатии, можно улучшить качество продуктов и услуг

  • Анализ и прогноз бизнес-показателей - организации, располагающие достаточными данными, могут выявлять проблемы с производительностью и предпринимать действенные шаги для их преодоления. Кроме того, если проведённый анализ отображается визуально, результаты обрабатываются быстрее и помогают принимать более обоснованные решения о будущих планах организации.

6. Виды Системы анализа данных

Системы статистического анализа информации
Программные системы статистического анализа (ССА, англ. Statistical analysis systems, SA) предназначены для выполнения комплексных статистических исследований данных. Такие программные продукты поддерживают такие методы анализа, как регрессионный анализ, предсказательная аналитика, анализ временных рядов и статистическое моделирование.
Системы потоковой аналитики
Системы потоковой аналитики (СПА, англ. Stream Analytics Systems, SAS) отслеживают и анализируют поток высокочастотно меняющихся данных в режиме реального времени. Системы позволяют, используя доступные для анализа большие данные, контролировать качество, вывлять аномалии в рабочих процессах и извлекать иную пользу из рабочей информации.
Системы интеллектуального анализа данных
Программное обеспечение интеллектуального анализа данных предназначено для поиска неочевидных и нетривиальных представлений и выводов, имеющих практическое применение.
Системы предсказательной аналитики
Программные системы предсказательной аналитики (ПА, англ. Predictive analytics systems, PA) направлены на построение прогностической модели на основе исторических данных, другими словами, на прогноз будущего поведения объектов на основе того, как они вели себя в прошлом.
Системы аналитики больших данных
Программные системы аналитики больших данных (САБОД, англ. Big data analytics, BDA) помогают аналитикам данных и ведущим профильным специалистам анализировать тенденции, закономерности и аномалии прикладных данных и строить практически полезные визуализации.

7. Отличительные черты Системы анализа данных

Для включения в категорию анализа данных программное обеспечение должно удовлетворять следующим критериям:

  • Извлечение структурированных, плохо структурированных и неструктурированных данных;
  • Извлечение данных из различных источников;
  • Экспорт извлеченных данных в различные читаемые форматы.

Сравнение Системы анализа данных (САД)

Систем: 27

SAS Enterprise Miner

SAS

Логотип системы SAS Enterprise Miner

SAS Enterprise Miner – это платформа для оптимизации процесса интеллектуального анализа данных при разработке описательных и прогнозных моделей с использованием структурированных алгоритмов и визуальных показателей оценки.

QlikView

Qlik

Логотип системы QlikView

QlikView – это аналитическое решение для быстрой разработки высокоинтерактивных аналитических приложений и панелей мониторинга, обеспечивающих представление информации по деловым задачам.

RapidMiner

RapidMiner

Логотип системы RapidMiner

RapidMiner – это платформа анализа данных, позволяющая развёртывать прогнозные модели, модели машинного обучения и эффективная при решении разнообразных аналитических задач.

Dataiku DSS

Dataiku

Логотип системы Dataiku DSS

Dataiku Data Science Studio – это система анализа данных для различных компаний, независимо от их опыта, отрасли или размера, стремящихся создать стратегические преимущества бизнеса, основанные на данных..

NVivo

QSR International

Логотип системы NVivo

NVivo – это аналитическая система, помогающая извлекать полезные знания из данных, получая четко формулировать обоснованные выводы со строгими доказательствами.

Stata

StataCorp

Логотип системы Stata

Stata – это полноценное интегрированное программное решение, обеспечивающее все потребности в области науки о данных — манипулирование данными, визуализацию, статистический анализ и автоматизированную отчётность.

IBM SPSS Statistics

IBM

Логотип системы IBM SPSS Statistics

IBM SPSS Statistics – это аналитическое программное обеспечение, позволяющее производить продвинутый статистический анализ деловых данных, охватывая решение всех задач от планирования и сбора данных до непосредственного анализа и построения бизнес-отчётности.

TIBCO Data Science

TIBCO

Логотип системы TIBCO Data Science

TIBCO Data Science – это комплексная аналитическая платформа, позволяющая применять полный комплекс современных аналитических методов над деловыми данными компании.

Anaconda

Anaconda

Логотип системы Anaconda

Anaconda – это платформа управления пакетами приложений анализа данных (для языков Python и R) с открытым исходным кодом. Система позволяет специалистам по обработке данных быстро разворачивать проекты машинного обучения, предоставляя необходимую информацию для лиц, принимающих решения.

NodeXL

Social Media Research Foundation

Логотип системы NodeXL

NodeXL – это программное дополнение для программы Excel, позволяющее строить, анализировать и исследовать сетевые модели так же не сложно, как стандартные круговые диаграммы.

Informatica PowerCenter

Informatica

Логотип системы Informatica PowerCenter

Informatica PowerCenter – это платформа интеграции корпоративных данных, помогающая организациям получать доступ, преобразовывать и интегрировать данные из различных систем на лету.

Qlik Sense

Qlik

Логотип системы Qlik Sense

Qlik Sense – это программа для бизнес-аналитики (BI), помогающая выявить сведения, которые крайне сложно получить на основе традиционных запросов в базах данных.

Oracle Business Intelligence Cloud Service

Oracle Corporation

Логотип системы Oracle Business Intelligence Cloud Service

Oracle Business Intelligence Cloud Service – это онлайн-сервис бизнес-аналитики, направленная на улучшение качества анализа данных за счёт управления представлениями и визуализаций.

SAS Visual Analytics

SAS

Логотип системы SAS Visual Analytics

SAS Visual Analytics – это система аналитики для бизнеса, которая помогает глубже изучать данные, находить новые закономерности, создавать удобочитаемые графические представления для более детального понимания бизнеса.

IBM Cognos Analytics

IBM

Логотип системы IBM Cognos Analytics

IBM Cognos Analytics – это компонентный онлайн-сервис бизнес-аналитики (BI), обеспечивающий доступ к широкому диапазону функций для создания бизнес-отчётов, анализа данных, мониторинга событий и метрик с целью выработки эффективных бизнес-решений.

Contour BI

Contour Components

Логотип системы Contour BI

Contour BI – компьютерная программа бизнес-аналитики для сбора, хранения, анализа статистических данных и подготовки бизнес-отчётности.

Sisense

Sisense

Логотип системы Sisense

Аналитическая платформа Sisense – это комплексная платформа анализа данных, которая позволяет аналитикам, инженерам по обработке данных и разработчикам создавать аналитические приложения, обеспечивающие высокий уровень информативности для пользователей.

InsightSquared

InsightSquared

Логотип системы InsightSquared

InsightSquared - программный продукт, предназначенный для сбора, обработки, хранения данных и их визуализации.

Tableau Public

Tableau Software

Логотип системы Tableau Public

Tableau Public – это бесплатное программное обеспечение BI, которое позволяет подключаться к электронной таблице или файлу и создавать интерактивные визуализации данных.

Board

Board

Логотип системы Board

Board – это программный продукт, предназначенный для комплексной бизнес-аналитики и управления производительностью бизнеса.

Logi Predict

Logi Analytics

Логотип системы Logi Predict

Logi Predict – это аналитическое приложение, позволяющее анализировать информацию и прогнозировать вариантов возможных событий, обеспечиввая тем самым возможность встроить алгоритмы машинного обучения и прогностические модели в любой программный продукт.

Pentaho

Hitachi Vantara

Логотип системы Pentaho

Платформа Pentaho – это программный продукт, позволяющий извлекать, объединять, трансформировать, смешивать, очищать и подготавливать большие данные в виде потоковой модели из различных обработчиков.

Looker

Looker Data Sciences

Логотип системы Looker

Looker – это аналитическая платформа, объединяющий бизнес-данные и бизнес-команду, позволяя каждому специалисту исследовать и понимать данные для поддержки принятия эффективных решений.

Statsbot

Statsbot

Логотип системы Statsbot

Statsbot – это онлайн-сервис, обеспечивающий быструю аналитику для бизнеса. Система извлекает данные из различных систем-источников и предоставляет их в полном и удобном для анализа виде без затрат на программирование.

SAS Visual Data Mining and Machine Learning

SAS

Логотип системы SAS Visual Data Mining and Machine Learning

– это.

TIBCO Spotfire

TIBCO

Логотип системы TIBCO Spotfire

TIBCO Jaspersoft

TIBCO

Логотип системы TIBCO Jaspersoft

– это.

Руководство по покупке Системы анализа данных

Что такое Системы анализа данных

Программное обеспечение для анализа данных - это решения, обеспечивающие обработку различных бизнес-данных. Такие системы и сервисы позволяют выделять ключевые особенности изучаемого объекта или процесса для пользователя, а также обнаруживать новые возможности продукта, маркетинговые сегменты, отраслевые вертикали и многое другое.

Зачем бизнесу Системы анализа данных

Анализ данных определяется как процесс автоматизированного/автоматического сбора, очистки, преобразования и моделирования данных для обнаружения полезной информации и принятия управленческих бизнес-решений. Всякий раз, когда принимается очередное деловое решение в повседневной жизни, мы думаем, что произошло в прошлый раз, что будет происходить в дальнейшем. На основании истории и прогноза, ищется и выбирается конкретное решение. Рассмотренный пример - не что иное, как анализ нашего прошлого или будущего и принятие решений на его основе.

Для выполнения анализа могут быть собраны воспоминания о прошлом или планы на будущее, что тоже есть не что иное, как сбор и обработка данных. Все эти операции анализа данных в современный век развития информационных технологий могут выполняться с применением специализированного программного обеспечения - систем анализа данных, и с использованием дополнительных источников данных, открытых баз данных, баз знаний и т.п. В целом, данный процесс, выполняемый аналитиком, руководителем или предпринимателем для отдельно взятой бизнес-цели, называется анализом данных.

Анализ данных может быть направлен на достижение различных целей, стоящих перед бизнесом, и иметь различную глубину разработки вопроса:

  • Описательный анализ – описание процесса КАК ЕСТЬ. Фактическое изложение процесса и проблем, которые необходимо решить. Возможность использования формализованных моделей для передачи знаний между сотрудниками во всю широту компании.

  • Диагностический анализ – выявление первопричин проблем. Глубокий и детализированный аналитический подход, использующий методы интеллектуального анализа данных для выявления контекста и первопричин бизнес-проблемы.

  • Прогностический анализ - прогнозирование на основе исторических данных того, как может развиваться ситуация. Методы, называемые также расширенной аналитикой, используют интеллектуальный анализ данных, машинное обучение и прогнозное моделирование сценариев.

  • Прескриптивный анализ – формирование видения последующих действий. Используя как исторические данные, так и внешнюю информацию, продукт анализа данных может обеспечить расчет необходимых показателей для выстраивания следующих шагов, которые бизнес должен предпринять для решения заявленных проблем.

Назначение и цели использования Системы анализа данных

Системы анализа данных (АД, англ. Data Analysis Systems, DA) позволяют исследовать различные наборы данных, для обнаружения закономерностей, тенденций, корреляций и получения прочих полезных выводов, которые в дальнейшем могут быть использованы при принятии решений, построении прогнозов, планировании, управлении различными объектами и протекающими в них процессами. Программные продукты анализа данных помогают преобразовать сырые данные в работающие идеи, помогая компаниям принимать более обоснованные решения и улучшать ежедневные операции.

При старте работ по анализу данных необходимо в первую очередь определить цели, на основании которых можно формировать требуемые актуальные наборы данных. Для аналитического исследования могут использоваться внутренние (CRM, ERP-системы, инструменты автоматизации маркетинга и другие) и внешние данные, структурированные, полуструктурированные и неструктурированные.

Программное обеспечения аналитики данных должно позволять хранить информацию, полученную из множества источников. Для проведения качественного анализа данных, программные продукты данной категории должны иметь встроенные настраиваемые инструменты по «очистке» данных: удалять дубликаты, выявлять аномалии и несоответствия. Следующим этапом анализа является работа с данными, применение на получаемой выборке методов интеллектуального анализа, поточного анализа и пр.Заключительным этапом является интерпретация результатов анализа данных, которая должна подтвердить или опровергнуть выдвинутые изначально гипотезы, привести разбирающегося в предметной области специалиста или руководителя к конкретным выводам и управленческим решениям.

Обзор основных функций и возможностей Системы анализа данных
Администрирование
Возможность администрирования позволяет осуществлять настройку и управление функциональностью системы, а также управление учётными записями и правами доступа к системе.
Анализ больших данных
Функции Анализа больших данных (англ. Big Data Analysis, BDA) реализуют поддержку очень больших наборов данных для исследования предметной области, построения сложных моделей обработки данных и выявления неявных тенденций
Визуализация данных
Функции Визуализация данных позволяет пользователям выявлять причинно-следственные связи событий, формировать гипотезы или проверять идеи на основании визуального анализа данных
Импорт/экспорт данных
Возможность импорта и/или экспорта данных в продукте позволяет загрузить данные из наиболее популярных файловых форматов или выгрузить рабочие данные в файл для дальнейшего использования в другом ПО.
Индикация трендов и проблем
Функции Индикации трендов и проблем позволяют пользователям настроить автоматическое определение интересующих событий исходя из набора признаков и факторов
Интеллектуальный анализ данных (ИАД)
Функции Интеллектуального анализа данных (ИАД, англ Data Mining, DM) реализуют поиск неочевидных закономерностей, тенденций или извлечения иной информации из больших наборов данных с помощью графических или других инструментов
Машинное обучение
Функции Машинного обучения (англ. Machine Learning, ML) позволяют использовать для решения поставленных задач обучающиеся алгоритмы, проводя исследования на множестве аналогичных заданий, для полной или частичной автоматизации процессов принятия решений, управления рисками и т.д.
Многопользовательский доступ
Возможность многопользовательской доступа в программную систему обеспечивает одновременную работу нескольких пользователей на одной базе данных под собственными учётными записями. Пользователи в этом случае могут иметь отличающиеся права доступа к данным и функциям программного обеспечения.
Наличие API
Часто при использовании современного делового программного обеспечения возникает потребность автоматической передачи данных из одного ПО в другое. Например, может быть полезно автоматически передавать данные из Системы управления взаимоотношениями с клиентами (CRM) в Систему бухгалтерского учёта (БУ). Для обеспечения такого и подобных сопряжений программные системы оснащаются специальными Прикладными программными интерфейсами (англ. API, Application Programming Interface). С помощью таких API любые компетентные программисты смогут связать два программных продукта между собой для автоматического обмена информацией.
Отчётность и аналитика
Наличие у продукта функций подготовки отчётности и/или аналитики позволяют получать систематизированные и визуализированные данные из системы для последующего анализа и принятия решений на основе данных.
Потоковая аналитика
Функции Потоковой аналитики данных позволяют «на лету» применять аналитические алгоритмы над данными в режиме реального времени для отслеживания ключевых показателей бизнес-процессов
Прогнозирование и предсказательная аналитика
Функции Прогнозирования и Предсказательной аналитики позволяют пользователям составлять прогнозы предстоящих затрат, продаж, доходов и иных событий на основании прошлых данных с использованием различных статистических методов прогнозирования
Статистический анализ
Функции Статистического анализа дают пользователю инструментарий по математической организации данных, их исследованию, математической интерпретации и представлении данных, а также о выявлении регулярных закономерностей и тенденций
Интерактивная аналитическая обработка (OLAP)
Интерактивная аналитическая обработка (англ. OLAP) позволяет пользователям в реальном времени (онлайн) оперативно получать агрегированную информацию на основе больших массивов данных
Коннекторы для источников данных
Коннекторы для источников данных подразумевает либо преднастроенную интеграцию со сторонними источниками данных, либо возможность настройки данного взаимодействия на основе гибкого прикладного программного интерфейса (англ. Application Programming Interface, API)
Выгоды, преимущества и польза от применения Системы анализа данных

Основные преимущества, которые компания может получить, выполняя анализ данных являются:

  • Прогнозирование потребностей - благодаря проанализированным данным организация сможет понять потребности клиентов. Данные могут служить лучшему удовлетворению клиентских потребностей, обеспечивая долгосрочные отношения, предвосхищая правильные потребности.

  • Предоставление соответствующих продуктов/услуг - с помощью структурированных данных о продажах можно выявить критические тенденции рынка. В соответствии с тенденциями вы можете определить, какой клиент любит какой тип продукта или услуги. Предвидя потребности клиентов и их симпатии и антипатии, можно улучшить качество продуктов и услуг

  • Анализ и прогноз бизнес-показателей - организации, располагающие достаточными данными, могут выявлять проблемы с производительностью и предпринимать действенные шаги для их преодоления. Кроме того, если проведённый анализ отображается визуально, результаты обрабатываются быстрее и помогают принимать более обоснованные решения о будущих планах организации.

Виды Системы анализа данных
Системы статистического анализа информации
Программные системы статистического анализа (ССА, англ. Statistical analysis systems, SA) предназначены для выполнения комплексных статистических исследований данных. Такие программные продукты поддерживают такие методы анализа, как регрессионный анализ, предсказательная аналитика, анализ временных рядов и статистическое моделирование.
Системы потоковой аналитики
Системы потоковой аналитики (СПА, англ. Stream Analytics Systems, SAS) отслеживают и анализируют поток высокочастотно меняющихся данных в режиме реального времени. Системы позволяют, используя доступные для анализа большие данные, контролировать качество, вывлять аномалии в рабочих процессах и извлекать иную пользу из рабочей информации.
Системы интеллектуального анализа данных
Программное обеспечение интеллектуального анализа данных предназначено для поиска неочевидных и нетривиальных представлений и выводов, имеющих практическое применение.
Системы предсказательной аналитики
Программные системы предсказательной аналитики (ПА, англ. Predictive analytics systems, PA) направлены на построение прогностической модели на основе исторических данных, другими словами, на прогноз будущего поведения объектов на основе того, как они вели себя в прошлом.
Системы аналитики больших данных
Программные системы аналитики больших данных (САБОД, англ. Big data analytics, BDA) помогают аналитикам данных и ведущим профильным специалистам анализировать тенденции, закономерности и аномалии прикладных данных и строить практически полезные визуализации.
Отличительные черты Системы анализа данных

Для включения в категорию анализа данных программное обеспечение должно удовлетворять следующим критериям:

  • Извлечение структурированных, плохо структурированных и неструктурированных данных;
  • Извлечение данных из различных источников;
  • Экспорт извлеченных данных в различные читаемые форматы.
Soware логотип
Soware является основным источником сведений о прикладном программном обеспечении для предприятий. Используя наш обширный каталог категорий и программных продуктов, лица, принимающие решения в России и странах СНГ получают бесплатный инструмент для выбора и сравнения систем от разных разработчиков
Соваре, ООО Санкт-Петербург, Россия info@soware.ru
2024 Soware.Ru - Умный выбор систем для бизнеса