Платформы разработки искусственного интеллекта и нейросетей (ПРИИН, англ. Artificial Intelligence and Neural Networks Development Platforms, AI) – это комплексные решения, предназначенные для создания, обучения и развёртывания моделей искусственного интеллекта и нейросетей. Они предоставляют разработчикам инструменты, библиотеки и среды для работы с данными, обучения моделей, тестирования и оптимизации алгоритмов, а также интеграции готовых решений в приложения и системы.
Классификатор программных продуктов Соваре определяет конкретные функциональные критерии для систем. Для того, чтобы быть представленными на рынке Платформы разработки искусственного интеллекта и нейросетей, системы должны иметь следующие функциональные возможности:
Платформы искусственного интеллекта (AI)
Платформы разработки искусственного интеллекта и нейросетей (AI Dev)
Системы машинного обучения (ML)
Встроенное микропрограммное обеспечение искусственного интеллекта
Платформы создания чат-ботов (ПСЧБ)
Инфраструктурные платформы генеративного искусственного интеллекта
Платформы разработки нейросетевых моделей искусственного интеллекта

OpenAI Sora — это система генеративного ИИ, предназначенная для создания контента на основе текстовых запросов. Узнать больше про OpenAI Sora

RapidMiner — это платформа анализа данных, позволяющая развёртывать прогнозные модели, модели машинного обучения и эффективная при решении разнообразных аналитических задач. Узнать больше про RapidMiner

SAS Enterprise Miner — это платформа для оптимизации процесса интеллектуального анализа данных при разработке описательных и прогнозных моделей с использованием структурированных алгоритмов и визуальных показателей оценки. Узнать больше про SAS Enterprise Miner

Qlik Sense — это программа для бизнес-аналитики (BI), помогающая выявить сведения, которые крайне сложно получить на основе традиционных запросов в базах данных. Узнать больше про Qlik Sense

TIBCO Data Science — это комплексная аналитическая платформа, позволяющая применять полный комплекс современных аналитических методов над деловыми данными компании. Узнать больше про TIBCO Data Science

Anaconda — это платформа управления пакетами приложений анализа данных (для языков Python и R) с открытым исходным кодом. Система позволяет специалистам по обработке данных быстро разворачивать проекты машинного обучения, предоставляя необходимую информацию для лиц, при ... Узнать больше про Anaconda

Dataiku Data Science Studio — это система анализа данных для различных компаний, независимо от их опыта, отрасли или размера, стремящихся создать стратегические преимущества бизнеса, основанные на данных. Узнать больше про Dataiku DSS

IBM SPSS Statistics — это аналитическое программное обеспечение, позволяющее производить продвинутый статистический анализ деловых данных, охватывая решение всех задач от планирования и сбора данных до непосредственного анализа и построения бизнес-отчётности. Узнать больше про IBM SPSS Statistics

SAS Visual Data Mining and Machine Learning — это комплексное решение для анализа данных и машинного обучения, предоставляющее инструменты для выявления закономерностей, прогнозирования и оптимизации бизнес-процессов на основе больших объёмов информации. Узнать больше про SAS Visual Data Mining and Machine Learning

Grok— это генеративная языковая модель с ИИ-компонентами, способная анализировать данные в реальном времени и генерировать креативный контент с учётом контекста. Узнать больше про Grok

Logi Predict — это аналитическое приложение, позволяющее анализировать информацию и прогнозировать вариантов возможных событий, обеспечиввая тем самым возможность встроить алгоритмы машинного обучения и прогностические модели в любой программный продукт. Узнать больше про Logi Predict

GPT-4o — это мультимодальная модель искусственного интеллекта, способная обрабатывать текст, изображения и аудио в режиме реального времени, с поддержкой более 50 языков и возможностью голосового взаимодействия. Узнать больше про GPT-4o

Enterprise h2oGPTe — это платформа для разработки и внедрения ИИ-решений, упрощающая создание и эксплуатацию нейросетевых моделей в бизнесе и науке. Узнать больше про Enterprise h2oGPTe

Palantir AIP — это платформа для разработки ИИ-решений, позволяющая анализировать данные и решать сложные задачи в различных отраслях экономики и безопасности.. Узнать больше про Palantir AIP

LangChain — это платформа для разработки приложений на базе больших языковых моделей, упрощающая переход от идеи к коду для разработчиков ИИ-решений. Узнать больше про LangChain

Scale GenAI Platform — это платформа для разработки и оптимизации генеративных ИИ-моделей, обеспечивающая управление данными и оценку моделей для предприятий. Узнать больше про Scale GenAI Platform

W&B Models — это платформа для ML-инженеров и разработчиков ИИ, предназначенная для управления MLops-процессами, ускорения экспериментов и улучшения коллаборации. Узнать больше про W&B Models

W&B Weave — это платформа для разработки и управления ИИ-моделями, предназначенная для ML-инженеров и разработчиков ИИ, обеспечивает координацию MLops-процессов, мониторинг и итерации приложений. Узнать больше про W&B Weave

Alteryx Server — это платформа для развёртывания и масштабирования аналитических рабочих процессов, позволяющая анализировать данные и обмениваться результатами. Узнать больше про Alteryx Server

Arize — это платформа для мониторинга и анализа ML-моделей, позволяющая выявлять и устранять проблемы в работе ИИ-систем, целевая аудитория — специалисты по машинному обучению. Узнать больше про Arize

ignio — это AIOps-платформа для автоматизации задач жизненного цикла ИТ, обеспечивающая наблюдаемость, аналитику на базе ИИ и самовосстановление в гибридных и мультиоблачных средах. Узнать больше про ignio

Doctor Droid — это программное обеспечение с ИИ для инженеров-разработчиков, позволяющее оперативно выявлять влияние функций продукта на бизнес-метрики и принимать меры. Узнать больше про Doctor Droid

CloudFabrix Data-centric AIOps Platform — это платформа для автоматизации ИТ-операций с использованием ИИ, оптимизирующая рабочие процессы и поддержку принятия решений в организациях. Узнать больше про CloudFabrix Data-centric AIOps Platform

iFusion — это система машинного обучения для цифровой трансформации бизнеса, поддерживающая когнитивную аналитику и разработку SaaS-решений. Узнать больше про iFusion

MarkovML — это no-code платформа ИИ для предприятий, ускоряющая анализ данных, автоматизацию ML-моделей и оптимизацию ML-рабочих процессов. Узнать больше про MarkovML

Moogsoft AIOps — это платформа управления инцидентами, использующая машинное обучение для корреляции данных телеметрии и выявления корневых причин сбоев в ИТ-системах. Узнать больше про Moogsoft AIOps

PagerDuty — это платформа для управления цифровыми операциями, обеспечивающая мониторинг инцидентов, AIOps и автоматизацию процессов в реальном времени для бизнеса.. Узнать больше про PagerDuty

Saturn Cloud — это платформа для работы команд data science, обеспечивающая коллаборацию, развёртывание моделей и поддержку Python и R.. Узнать больше про Saturn Cloud

Qwak Platform — это платформа машинного обучения для управления ML-пайплайнами, предоставляющая инструменты обработки данных, построения и развёртывания моделей, мониторинга.. Узнать больше про Qwak Platform

Base SAS — это платформа для аналитики и обработки данных, предназначенная для организаций, позволяющая преобразовывать данные в обоснованные решения.. Узнать больше про Base SAS

SAS Forecast Server — это система машинного обучения для прогнозирования, предназначенная для анализа данных и поддержки принятия решений в организациях.. Узнать больше про SAS Forecast Server

SAS Visual Forecasting — это система машинного обучения для прогнозирования, предназначенная для анализа данных и поддержки принятия решений в организациях.. Узнать больше про SAS Visual Forecasting

SAS Visual Investigator — это система машинного обучения для анализа данных и поддержки принятия решений в организациях.. Узнать больше про SAS Visual Investigator

SAS Model Manager — это система машинного обучения для управления моделями, обеспечивающая аналитическую поддержку принятия решений в организациях.. Узнать больше про SAS Model Manager

JMP Pro — это программное обеспечение для статистического анализа данных, позволяющее выполнять доступ к данным, их обработку и визуализацию, предназначено для учёных и инженеров.. Узнать больше про JMP Pro

RapidCanvas — это платформа машинного обучения, объединяющая ИИ-агентов и человеческий опыт для анализа данных предприятий в различных отраслях.. Узнать больше про RapidCanvas

DeepSee — это платформа автоматизации знаний, предназначенная для обработки неструктурированных данных и получения бизнес-инсайтов в регулируемых отраслях. Узнать больше про DeepSee

Microsoft Azure Machine Learning — это облачная платформа для разработки и развёртывания моделей машинного обучения, предназначенная для бизнеса и аналитиков данных.. Узнать больше про Microsoft Azure Machine Learning

Azure DataBricks — это платформа для машинного обучения и обработки больших данных, предназначенная для аналитиков и разработчиков, позволяющая строить и масштабировать ML-модели.. Узнать больше про Azure DataBricks

Posit Team — это корпоративная система анализа данных, предназначенная для совместной работы команд над аналитическими задачами, обработки и визуализации данных. Узнать больше про Posit Team

Selector — это AIOps-платформа для управления сетевыми и прикладными инфраструктурами, обеспечивающая анализ данных в реальном времени и сокращение MTTR для ИТ-команд. Узнать больше про Selector

Spell — это платформа для машинного обучения, упрощающая работу с глубоким обучением и ИИ, нацеленная на широкую аудиторию пользователей.. Узнать больше про Spell

TrueFoundry AI Platform — это PaaS-платформа для корпоративных ML-команд, позволяющая ускорять разработку и развёртывание ML/LLM-приложений с управлением инфраструктурой.. Узнать больше про TrueFoundry AI Platform

IBM AIOps Insights — это платформа для автоматизации ИТ-операций с применением ИИ, предназначенная для оптимизации инфраструктуры и управления ИТ-сервисами в крупных компаниях. Узнать больше про IBM AIOps Insights

Comet — это платформа для машинного обучения, предназначенная для отслеживания обучения моделей, сравнения запусков, логирования ответов LLM и управления версиями данных и моделей.. Узнать больше про Comet

Better Stack — это инструмент для мониторинга и отладки IT-систем, позволяющий выявлять и устранять инциденты в технологических стеках. Узнать больше про Better Stack

BigML — это облачная платформа машинного обучения для анализа данных и прогнозирования, доступная пользователям без специальных знаний в ИИ. Узнать больше про BigML

MATLAB — это среда программирования для разработки алгоритмов, анализа данных, визуализации и численных вычислений, используемая учёными и инженерами. Узнать больше про MATLAB

Akkio — это платформа для прогнозной аналитики и моделирования, использующая генеративный ИИ для повышения операционной эффективности бизнеса.. Узнать больше про Akkio

Deepnote — это облачная коллаборативная среда для работы с данными, анализа и визуализации, совместимая с Jupyter, предназначенная для Data Scientist и аналитиков. Узнать больше про Deepnote

Dell Generative AI Solutions — это инфраструктурная платформа для развёртывания и использования генеративного ИИ в корпоративных системах и мультиоблачных средах. Узнать больше про Dell Generative AI Solutions

FICO Analytics Workbench — это платформа для аналитики и машинного обучения, предназначенная для управления рисками, выявления мошенничества и оптимизации бизнес-процессов. Узнать больше про FICO Analytics Workbench

StackState — это система мониторинга и устранения неполадок для Kubernetes-приложений, помогающая разработчикам и SRE обеспечивать производительность и надёжность систем. Узнать больше про StackState

Intel Tiber AI Studio — это система машинного обучения для разработки и внедрения ИИ-решений в бизнес-процессы и технологические проекты. Узнать больше про Intel Tiber AI Studio

HPE Ezmeral ML Ops — это система машинного обучения для управления ML-рабочими процессами, автоматизации развёртывания моделей и мониторинга в корпоративной среде. Узнать больше про HPE Ezmeral ML Ops

DX Operational Intelligence — это система для мониторинга и анализа ИТ-инфраструктуры, обеспечивающая оптимизацию операций с помощью ИИ-технологий. Узнать больше про DX Operational Intelligence

Anyscale — это платформа для разработки и масштабирования приложений, включая AI и Python-решения, предназначенная для разработчиков разного уровня подготовки. Узнать больше про Anyscale

BigPanda — это платформа AIOps для автоматизации управления инцидентами, предотвращения простоев и улучшения IT-операций в организациях. Узнать больше про BigPanda

Data Science Platform & AutoML Software — это платформа для автоматизации машинного обучения, предназначенная для оптимизации ML-моделей и построения прозрачных пайплайнов в бизнесе. Узнать больше про dotData Data Science Platform & AutoML

Neo4j Graph Data Science — это платформа для работы с графовыми базами данных, предназначенная для анализа взаимосвязей в данных и выявления скрытых паттернов, используется компаниями и специалистами в области данных. Узнать больше про Neo4j Graph Data Science
Платформы разработки искусственного интеллекта и нейросетей (ПРИИН, англ. Artificial Intelligence and Neural Networks Development Platforms, AI) – это комплексные решения, предназначенные для создания, обучения и развёртывания моделей искусственного интеллекта и нейросетей. Они предоставляют разработчикам инструменты, библиотеки и среды для работы с данными, обучения моделей, тестирования и оптимизации алгоритмов, а также интеграции готовых решений в приложения и системы.
Разработка искусственного интеллекта и нейросетей — это многогранная деятельность, включающая в себя создание, обучение и внедрение моделей, способных имитировать человеческое мышление и решать сложные задачи. Она требует применения математических и статистических методов, обработки больших объёмов данных, использования специализированных программных и аппаратных средств, а также глубоких знаний в области машинного обучения, нейронных сетей и других технологий. В процессе разработки осуществляется построение архитектур моделей, подбор и предобработка данных, обучение и настройка параметров, тестирование и оптимизация производительности, а также интеграция готовых решений в существующие системы и приложения.
Ключевые аспекты данного процесса:
Ключевую роль в разработке искусственного интеллекта и нейросетей играют программные решения, которые обеспечивают необходимую инфраструктуру и инструменты для всех этапов работы — от исследования и разработки до развёртывания и сопровождения готовых систем. Платформы разработки искусственного интеллекта и нейросетей (ПРИИН) предоставляют комплексные возможности для работы с данными и моделями, существенно упрощая и ускоряя процесс создания интеллектуальных систем.
Платформы разработки искусственного интеллекта и нейросетей предназначены для создания целостной среды, которая позволяет разработчикам реализовывать полный цикл работы с моделями ИИ — от начального проектирования и обучения до тестирования, оптимизации и финального развёртывания в прикладных системах. Эти системы обеспечивают интеграцию разнообразных инструментов и библиотек, необходимых для обработки и анализа данных, разработки и настройки алгоритмов машинного обучения, а также предоставляют механизмы для масштабирования и адаптации моделей под конкретные задачи и условия эксплуатации.
Кроме того, платформы разработки ИИ и нейросетей позволяют упростить процесс интеграции разработанных моделей в существующие информационные системы и приложения, обеспечивая совместимость и взаимодействие с другими программными компонентами. Они включают средства для мониторинга и анализа производительности моделей в реальных условиях, а также инструменты для дальнейшей доработки и совершенствования алгоритмов на основе получаемых данных и обратной связи от эксплуатации, что способствует повышению эффективности и надёжности решений на базе искусственного интеллекта.
Платформы разработки искусственного интеллекта и нейросетей в основном используют следующие группы пользователей:
На основе своего экспертного мнения Соваре рекомендует наиболее внимательно подходить к выбору решения. При выборе программного продукта из функционального класса Платформы разработки искусственного интеллекта и нейросетей (ПРИИН) необходимо учитывать ряд ключевых факторов, которые определят пригодность платформы для решения конкретных бизнес-задач. Прежде всего, следует оценить масштаб деятельности компании: для крупных корпораций могут быть актуальны платформы с расширенными возможностями масштабирования и высокой степенью надёжности, тогда как для малых и средних предприятий важнее гибкость и простота использования. Также важно учитывать специфику отрасли — например, в финансовом секторе могут быть жёсткие требования к безопасности данных и соответствию регуляторным нормам, в то время как в сфере розничной торговли акцент может быть сделан на скорость обработки данных и возможность быстрой адаптации моделей под изменяющиеся условия рынка. Не менее значимы технические ограничения, включая существующую ИТ-инфраструктуру, совместимость с другими системами, требования к вычислительным ресурсам и поддержке определённых языков программирования.
Ключевые аспекты при принятии решения:
После анализа вышеперечисленных факторов следует провести пилотное тестирование нескольких платформ на ограниченном объёме данных или в рамках конкретного бизнес-процесса. Это позволит оценить не только технические характеристики, но и удобство работы с платформой, качество поддержки со стороны разработчика, а также способность платформы адаптироваться к специфическим требованиям бизнеса. Кроме того, важно учитывать перспективы развития платформы, наличие дорожной карты и обновлений, которые будут соответствовать будущим потребностям компании.
Платформы разработки искусственного интеллекта и нейросетей (ПРИИН) играют ключевую роль в ускорении и упрощении процесса создания интеллектуальных систем. Они предоставляют набор инструментов и ресурсов, которые существенно повышают эффективность разработки и внедрения ИИ-решений. Среди основных преимуществ использования ПРИИН можно выделить:
Ускорение разработки моделей. ПРИИН позволяют сократить время на создание и обучение моделей ИИ благодаря готовым инструментам и библиотекам, что ускоряет вывод продуктов на рынок.
Снижение затрат на разработку. Использование готовых платформ уменьшает необходимость в разработке собственных инструментов, что снижает финансовые и временные затраты на проекты.
Повышение качества моделей. Предоставляемые ПРИИН инструменты для тестирования и оптимизации алгоритмов способствуют созданию более точных и надёжных моделей ИИ.
Упрощение работы с данными. Платформы предлагают интегрированные решения для обработки и анализа данных, что облегчает подготовку данных для обучения моделей и повышает эффективность работы с ними.
Упрощение интеграции решений. ПРИИН обеспечивают механизмы для интеграции разработанных моделей в существующие приложения и системы, что упрощает внедрение ИИ-решений в бизнес-процессы.
Доступ к передовым технологиям. Использование платформ даёт разработчикам доступ к последним достижениям в области ИИ и нейросетей, что позволяет оставаться в тренде технологических разработок.
Масштабируемость решений. Платформы позволяют легко масштабировать разработанные решения в зависимости от растущих потребностей бизнеса, что важно для долгосрочного развития проектов.
Классификатор программных продуктов Соваре определяет конкретные функциональные критерии для систем. Для того, чтобы быть представленными на рынке Платформы разработки искусственного интеллекта и нейросетей, системы должны иметь следующие функциональные возможности:
По аналитическим данным Соваре, в 2025 году на рынке платформ разработки искусственного интеллекта и нейросетей (ПРИИН) можно ожидать усиления тенденций, связанных с повышением эффективности и доступности инструментов для разработки и внедрения ИИ-решений, расширением возможностей мультимодальной обработки данных, усилением фокуса на объяснимость и прозрачность алгоритмов, а также с развитием методов обеспечения безопасности и защиты данных. Среди ключевых трендов:
Развитие низкокодовых и бескодовых платформ. Упрощение процесса разработки моделей ИИ за счёт визуальных инструментов и готовых блоков, что позволит привлекать к созданию решений специалистов без глубокого знания программирования.
Интеграция с мультимодальными данными. Расширение возможностей работы с различными типами данных (текст, изображения, аудио, видео) в рамках единых платформ, что повысит эффективность обучения моделей и расширит области их применения.
Объяснимый искусственный интеллект (Explainable AI, XAI). Рост спроса на инструменты, позволяющие понимать логику работы моделей ИИ, объяснять их решения пользователям и регуляторам, что особенно важно в критически важных отраслях.
Автоматизация жизненного цикла модели. Развитие инструментов для автоматического мониторинга, тестирования, обновления и оптимизации моделей на всех этапах их жизненного цикла, от разработки до эксплуатации.
Усиление защиты данных и моделей. Внедрение передовых методов шифрования, анонимизации и других технологий для защиты данных и интеллектуальной собственности, связанных с моделями ИИ.
Облачные решения и масштабируемость. Дальнейшее развитие облачных платформ, предоставляющих гибкие ресурсы для обучения и развёртывания моделей, что позволит снизить затраты на инфраструктуру и упростить масштабирование решений.
Интеграция с другими технологиями. Углубление интеграции ПРИИН с технологиями больших данных, интернета вещей, блокчейн и другими, что создаст новые возможности для комплексных решений в различных отраслях.
OpenAI

OpenAI Sora — это система генеративного ИИ, предназначенная для создания контента на основе текстовых запросов.
RapidMiner

RapidMiner — это платформа анализа данных, позволяющая развёртывать прогнозные модели, модели машинного обучения и эффективная при решении разнообразных аналитических задач.
SAS

SAS Enterprise Miner — это платформа для оптимизации процесса интеллектуального анализа данных при разработке описательных и прогнозных моделей с использованием структурированных алгоритмов и визуальных показателей оценки.
Qlik

Qlik Sense — это программа для бизнес-аналитики (BI), помогающая выявить сведения, которые крайне сложно получить на основе традиционных запросов в базах данных.
TIBCO

TIBCO Data Science — это комплексная аналитическая платформа, позволяющая применять полный комплекс современных аналитических методов над деловыми данными компании.
Anaconda

Anaconda — это платформа управления пакетами приложений анализа данных (для языков Python и R) с открытым исходным кодом. Система позволяет специалистам по обработке данных быстро разворачивать проекты машинного обучения, предоставляя необходимую информацию для лиц, принимающих решения.
Dataiku

Dataiku Data Science Studio — это система анализа данных для различных компаний, независимо от их опыта, отрасли или размера, стремящихся создать стратегические преимущества бизнеса, основанные на данных.
IBM

IBM SPSS Statistics — это аналитическое программное обеспечение, позволяющее производить продвинутый статистический анализ деловых данных, охватывая решение всех задач от планирования и сбора данных до непосредственного анализа и построения бизнес-отчётности.
SAS

SAS Visual Data Mining and Machine Learning — это комплексное решение для анализа данных и машинного обучения, предоставляющее инструменты для выявления закономерностей, прогнозирования и оптимизации бизнес-процессов на основе больших объёмов информации.
xAI

Grok— это генеративная языковая модель с ИИ-компонентами, способная анализировать данные в реальном времени и генерировать креативный контент с учётом контекста.
Logi Analytics

Logi Predict — это аналитическое приложение, позволяющее анализировать информацию и прогнозировать вариантов возможных событий, обеспечиввая тем самым возможность встроить алгоритмы машинного обучения и прогностические модели в любой программный продукт.
OpenAI

GPT-4o — это мультимодальная модель искусственного интеллекта, способная обрабатывать текст, изображения и аудио в режиме реального времени, с поддержкой более 50 языков и возможностью голосового взаимодействия.
H2O.ai

Enterprise h2oGPTe — это платформа для разработки и внедрения ИИ-решений, упрощающая создание и эксплуатацию нейросетевых моделей в бизнесе и науке.
Palantir

Palantir AIP — это платформа для разработки ИИ-решений, позволяющая анализировать данные и решать сложные задачи в различных отраслях экономики и безопасности..
LangChain

LangChain — это платформа для разработки приложений на базе больших языковых моделей, упрощающая переход от идеи к коду для разработчиков ИИ-решений.
Scale AI

Scale GenAI Platform — это платформа для разработки и оптимизации генеративных ИИ-моделей, обеспечивающая управление данными и оценку моделей для предприятий.
Weights & Biases

W&B Models — это платформа для ML-инженеров и разработчиков ИИ, предназначенная для управления MLops-процессами, ускорения экспериментов и улучшения коллаборации.
Weights & Biases

W&B Weave — это платформа для разработки и управления ИИ-моделями, предназначенная для ML-инженеров и разработчиков ИИ, обеспечивает координацию MLops-процессов, мониторинг и итерации приложений.
Alteryx

Alteryx Server — это платформа для развёртывания и масштабирования аналитических рабочих процессов, позволяющая анализировать данные и обмениваться результатами.
Arize AI

Arize — это платформа для мониторинга и анализа ML-моделей, позволяющая выявлять и устранять проблемы в работе ИИ-систем, целевая аудитория — специалисты по машинному обучению.
Digitate

ignio — это AIOps-платформа для автоматизации задач жизненного цикла ИТ, обеспечивающая наблюдаемость, аналитику на базе ИИ и самовосстановление в гибридных и мультиоблачных средах.
Doctor Droid

Doctor Droid — это программное обеспечение с ИИ для инженеров-разработчиков, позволяющее оперативно выявлять влияние функций продукта на бизнес-метрики и принимать меры.
Fabrix.ai

CloudFabrix Data-centric AIOps Platform — это платформа для автоматизации ИТ-операций с использованием ИИ, оптимизирующая рабочие процессы и поддержку принятия решений в организациях.
iFusion

iFusion — это система машинного обучения для цифровой трансформации бизнеса, поддерживающая когнитивную аналитику и разработку SaaS-решений.
MarkovML

MarkovML — это no-code платформа ИИ для предприятий, ускоряющая анализ данных, автоматизацию ML-моделей и оптимизацию ML-рабочих процессов.
Moogsoft

Moogsoft AIOps — это платформа управления инцидентами, использующая машинное обучение для корреляции данных телеметрии и выявления корневых причин сбоев в ИТ-системах.
PagerDuty

PagerDuty — это платформа для управления цифровыми операциями, обеспечивающая мониторинг инцидентов, AIOps и автоматизацию процессов в реальном времени для бизнеса..
Saturn Cloud

Saturn Cloud — это платформа для работы команд data science, обеспечивающая коллаборацию, развёртывание моделей и поддержку Python и R..
Qwak

Qwak Platform — это платформа машинного обучения для управления ML-пайплайнами, предоставляющая инструменты обработки данных, построения и развёртывания моделей, мониторинга..
SAS

Base SAS — это платформа для аналитики и обработки данных, предназначенная для организаций, позволяющая преобразовывать данные в обоснованные решения..
SAS

SAS Forecast Server — это система машинного обучения для прогнозирования, предназначенная для анализа данных и поддержки принятия решений в организациях..
SAS

SAS Visual Forecasting — это система машинного обучения для прогнозирования, предназначенная для анализа данных и поддержки принятия решений в организациях..
SAS

SAS Visual Investigator — это система машинного обучения для анализа данных и поддержки принятия решений в организациях..
SAS

SAS Model Manager — это система машинного обучения для управления моделями, обеспечивающая аналитическую поддержку принятия решений в организациях..
JMP Statistical Discovery

JMP Pro — это программное обеспечение для статистического анализа данных, позволяющее выполнять доступ к данным, их обработку и визуализацию, предназначено для учёных и инженеров..
RapidCanvas

RapidCanvas — это платформа машинного обучения, объединяющая ИИ-агентов и человеческий опыт для анализа данных предприятий в различных отраслях..
DeepSee

DeepSee — это платформа автоматизации знаний, предназначенная для обработки неструктурированных данных и получения бизнес-инсайтов в регулируемых отраслях.
Microsoft Corporation

Microsoft Azure Machine Learning — это облачная платформа для разработки и развёртывания моделей машинного обучения, предназначенная для бизнеса и аналитиков данных..
Microsoft Corporation

Azure DataBricks — это платформа для машинного обучения и обработки больших данных, предназначенная для аналитиков и разработчиков, позволяющая строить и масштабировать ML-модели..
Posit Software

Posit Team — это корпоративная система анализа данных, предназначенная для совместной работы команд над аналитическими задачами, обработки и визуализации данных.
Selector

Selector — это AIOps-платформа для управления сетевыми и прикладными инфраструктурами, обеспечивающая анализ данных в реальном времени и сокращение MTTR для ИТ-команд.
Spell

Spell — это платформа для машинного обучения, упрощающая работу с глубоким обучением и ИИ, нацеленная на широкую аудиторию пользователей..
TrueFoundry

TrueFoundry AI Platform — это PaaS-платформа для корпоративных ML-команд, позволяющая ускорять разработку и развёртывание ML/LLM-приложений с управлением инфраструктурой..
IBM

IBM AIOps Insights — это платформа для автоматизации ИТ-операций с применением ИИ, предназначенная для оптимизации инфраструктуры и управления ИТ-сервисами в крупных компаниях.
Comet ML

Comet — это платформа для машинного обучения, предназначенная для отслеживания обучения моделей, сравнения запусков, логирования ответов LLM и управления версиями данных и моделей..
Better Stack

Better Stack — это инструмент для мониторинга и отладки IT-систем, позволяющий выявлять и устранять инциденты в технологических стеках.
BigML

BigML — это облачная платформа машинного обучения для анализа данных и прогнозирования, доступная пользователям без специальных знаний в ИИ.
The MathWorks

MATLAB — это среда программирования для разработки алгоритмов, анализа данных, визуализации и численных вычислений, используемая учёными и инженерами.
Akkio

Akkio — это платформа для прогнозной аналитики и моделирования, использующая генеративный ИИ для повышения операционной эффективности бизнеса..
Deepnote

Deepnote — это облачная коллаборативная среда для работы с данными, анализа и визуализации, совместимая с Jupyter, предназначенная для Data Scientist и аналитиков.
Dell Technologies

Dell Generative AI Solutions — это инфраструктурная платформа для развёртывания и использования генеративного ИИ в корпоративных системах и мультиоблачных средах.
FICO

FICO Analytics Workbench — это платформа для аналитики и машинного обучения, предназначенная для управления рисками, выявления мошенничества и оптимизации бизнес-процессов.
StackState

StackState — это система мониторинга и устранения неполадок для Kubernetes-приложений, помогающая разработчикам и SRE обеспечивать производительность и надёжность систем.
Intel

Intel Tiber AI Studio — это система машинного обучения для разработки и внедрения ИИ-решений в бизнес-процессы и технологические проекты.
Hewlett Packard Enterprise

HPE Ezmeral ML Ops — это система машинного обучения для управления ML-рабочими процессами, автоматизации развёртывания моделей и мониторинга в корпоративной среде.
Broadcom

DX Operational Intelligence — это система для мониторинга и анализа ИТ-инфраструктуры, обеспечивающая оптимизацию операций с помощью ИИ-технологий.
Anyscale

Anyscale — это платформа для разработки и масштабирования приложений, включая AI и Python-решения, предназначенная для разработчиков разного уровня подготовки.
BigPanda

BigPanda — это платформа AIOps для автоматизации управления инцидентами, предотвращения простоев и улучшения IT-операций в организациях.
dotData

Data Science Platform & AutoML Software — это платформа для автоматизации машинного обучения, предназначенная для оптимизации ML-моделей и построения прозрачных пайплайнов в бизнесе.
Neo4j

Neo4j Graph Data Science — это платформа для работы с графовыми базами данных, предназначенная для анализа взаимосвязей в данных и выявления скрытых паттернов, используется компаниями и специалистами в области данных.
Платформы разработки искусственного интеллекта и нейросетей (ПРИИН, англ. Artificial Intelligence and Neural Networks Development Platforms, AI) – это комплексные решения, предназначенные для создания, обучения и развёртывания моделей искусственного интеллекта и нейросетей. Они предоставляют разработчикам инструменты, библиотеки и среды для работы с данными, обучения моделей, тестирования и оптимизации алгоритмов, а также интеграции готовых решений в приложения и системы.
Разработка искусственного интеллекта и нейросетей — это многогранная деятельность, включающая в себя создание, обучение и внедрение моделей, способных имитировать человеческое мышление и решать сложные задачи. Она требует применения математических и статистических методов, обработки больших объёмов данных, использования специализированных программных и аппаратных средств, а также глубоких знаний в области машинного обучения, нейронных сетей и других технологий. В процессе разработки осуществляется построение архитектур моделей, подбор и предобработка данных, обучение и настройка параметров, тестирование и оптимизация производительности, а также интеграция готовых решений в существующие системы и приложения.
Ключевые аспекты данного процесса:
Ключевую роль в разработке искусственного интеллекта и нейросетей играют программные решения, которые обеспечивают необходимую инфраструктуру и инструменты для всех этапов работы — от исследования и разработки до развёртывания и сопровождения готовых систем. Платформы разработки искусственного интеллекта и нейросетей (ПРИИН) предоставляют комплексные возможности для работы с данными и моделями, существенно упрощая и ускоряя процесс создания интеллектуальных систем.
Платформы разработки искусственного интеллекта и нейросетей предназначены для создания целостной среды, которая позволяет разработчикам реализовывать полный цикл работы с моделями ИИ — от начального проектирования и обучения до тестирования, оптимизации и финального развёртывания в прикладных системах. Эти системы обеспечивают интеграцию разнообразных инструментов и библиотек, необходимых для обработки и анализа данных, разработки и настройки алгоритмов машинного обучения, а также предоставляют механизмы для масштабирования и адаптации моделей под конкретные задачи и условия эксплуатации.
Кроме того, платформы разработки ИИ и нейросетей позволяют упростить процесс интеграции разработанных моделей в существующие информационные системы и приложения, обеспечивая совместимость и взаимодействие с другими программными компонентами. Они включают средства для мониторинга и анализа производительности моделей в реальных условиях, а также инструменты для дальнейшей доработки и совершенствования алгоритмов на основе получаемых данных и обратной связи от эксплуатации, что способствует повышению эффективности и надёжности решений на базе искусственного интеллекта.
Платформы разработки искусственного интеллекта и нейросетей в основном используют следующие группы пользователей:
На основе своего экспертного мнения Соваре рекомендует наиболее внимательно подходить к выбору решения. При выборе программного продукта из функционального класса Платформы разработки искусственного интеллекта и нейросетей (ПРИИН) необходимо учитывать ряд ключевых факторов, которые определят пригодность платформы для решения конкретных бизнес-задач. Прежде всего, следует оценить масштаб деятельности компании: для крупных корпораций могут быть актуальны платформы с расширенными возможностями масштабирования и высокой степенью надёжности, тогда как для малых и средних предприятий важнее гибкость и простота использования. Также важно учитывать специфику отрасли — например, в финансовом секторе могут быть жёсткие требования к безопасности данных и соответствию регуляторным нормам, в то время как в сфере розничной торговли акцент может быть сделан на скорость обработки данных и возможность быстрой адаптации моделей под изменяющиеся условия рынка. Не менее значимы технические ограничения, включая существующую ИТ-инфраструктуру, совместимость с другими системами, требования к вычислительным ресурсам и поддержке определённых языков программирования.
Ключевые аспекты при принятии решения:
После анализа вышеперечисленных факторов следует провести пилотное тестирование нескольких платформ на ограниченном объёме данных или в рамках конкретного бизнес-процесса. Это позволит оценить не только технические характеристики, но и удобство работы с платформой, качество поддержки со стороны разработчика, а также способность платформы адаптироваться к специфическим требованиям бизнеса. Кроме того, важно учитывать перспективы развития платформы, наличие дорожной карты и обновлений, которые будут соответствовать будущим потребностям компании.
Платформы разработки искусственного интеллекта и нейросетей (ПРИИН) играют ключевую роль в ускорении и упрощении процесса создания интеллектуальных систем. Они предоставляют набор инструментов и ресурсов, которые существенно повышают эффективность разработки и внедрения ИИ-решений. Среди основных преимуществ использования ПРИИН можно выделить:
Ускорение разработки моделей. ПРИИН позволяют сократить время на создание и обучение моделей ИИ благодаря готовым инструментам и библиотекам, что ускоряет вывод продуктов на рынок.
Снижение затрат на разработку. Использование готовых платформ уменьшает необходимость в разработке собственных инструментов, что снижает финансовые и временные затраты на проекты.
Повышение качества моделей. Предоставляемые ПРИИН инструменты для тестирования и оптимизации алгоритмов способствуют созданию более точных и надёжных моделей ИИ.
Упрощение работы с данными. Платформы предлагают интегрированные решения для обработки и анализа данных, что облегчает подготовку данных для обучения моделей и повышает эффективность работы с ними.
Упрощение интеграции решений. ПРИИН обеспечивают механизмы для интеграции разработанных моделей в существующие приложения и системы, что упрощает внедрение ИИ-решений в бизнес-процессы.
Доступ к передовым технологиям. Использование платформ даёт разработчикам доступ к последним достижениям в области ИИ и нейросетей, что позволяет оставаться в тренде технологических разработок.
Масштабируемость решений. Платформы позволяют легко масштабировать разработанные решения в зависимости от растущих потребностей бизнеса, что важно для долгосрочного развития проектов.
Классификатор программных продуктов Соваре определяет конкретные функциональные критерии для систем. Для того, чтобы быть представленными на рынке Платформы разработки искусственного интеллекта и нейросетей, системы должны иметь следующие функциональные возможности:
По аналитическим данным Соваре, в 2025 году на рынке платформ разработки искусственного интеллекта и нейросетей (ПРИИН) можно ожидать усиления тенденций, связанных с повышением эффективности и доступности инструментов для разработки и внедрения ИИ-решений, расширением возможностей мультимодальной обработки данных, усилением фокуса на объяснимость и прозрачность алгоритмов, а также с развитием методов обеспечения безопасности и защиты данных. Среди ключевых трендов:
Развитие низкокодовых и бескодовых платформ. Упрощение процесса разработки моделей ИИ за счёт визуальных инструментов и готовых блоков, что позволит привлекать к созданию решений специалистов без глубокого знания программирования.
Интеграция с мультимодальными данными. Расширение возможностей работы с различными типами данных (текст, изображения, аудио, видео) в рамках единых платформ, что повысит эффективность обучения моделей и расширит области их применения.
Объяснимый искусственный интеллект (Explainable AI, XAI). Рост спроса на инструменты, позволяющие понимать логику работы моделей ИИ, объяснять их решения пользователям и регуляторам, что особенно важно в критически важных отраслях.
Автоматизация жизненного цикла модели. Развитие инструментов для автоматического мониторинга, тестирования, обновления и оптимизации моделей на всех этапах их жизненного цикла, от разработки до эксплуатации.
Усиление защиты данных и моделей. Внедрение передовых методов шифрования, анонимизации и других технологий для защиты данных и интеллектуальной собственности, связанных с моделями ИИ.
Облачные решения и масштабируемость. Дальнейшее развитие облачных платформ, предоставляющих гибкие ресурсы для обучения и развёртывания моделей, что позволит снизить затраты на инфраструктуру и упростить масштабирование решений.
Интеграция с другими технологиями. Углубление интеграции ПРИИН с технологиями больших данных, интернета вещей, блокчейн и другими, что создаст новые возможности для комплексных решений в различных отраслях.