Логотип Soware
Логотип Soware

Бесплатные Платформы искусственного интеллекта (AI)

Программные платформы искусственного интеллекта (ИИ, англ. Artificial intelligence, AI) предлагают пользователям набор инструментов для создания интеллектуальных приложений. При помощи ИИ-платформ становится возможно применять технологии машинного обучения (ML), машинного зрения (OCR), обработки текста (NLP) и прочие.

Чтобы претендовать на включение в категорию AI-платформ, программный продукт должен:

  • Обеспечивать возможность построения интеллектуальных приложений с поддержкой искусственного интеллекта;
  • Позволять пользователям создавать алгоритмы машинного обучения или предлагать готовые алгоритмы для создания приложений;
  • Предоставлять разработчика возможность подключать к собственным алгоритмам источники данных для обеспечения машинного обучения и адаптации производительности.

Сравнение Платформы искусственного интеллекта (AI)

Выбрать по критериям:

Категории
Подходит для
Функции
Особенности
Тарификация
Развёртывание
Графический интерфейс
Поддержка языков
Сортировать:
Систем: 8
Логотип Entera

Entera от Entera

Entera – это облачный мультисервис для автоматической загрузки первичной документации в учётную систему 1С. Узнать больше про Entera

Логотип Plotly Dash

Plotly Dash от Plotly

Plotly Dash – это аналитический программный фреймворк Python для быстрого создания информационных панелей (дашбордов) для веб-браузера с использованием технологий ИАД, МО и ИИ. Узнать больше про Plotly Dash

Логотип Qlik Sense

Qlik Sense от Qlik

Qlik Sense – это программа для бизнес-аналитики (BI), помогающая выявить сведения, которые крайне сложно получить на основе традиционных запросов в базах данных. Узнать больше про Qlik Sense

Логотип Anaconda

Anaconda от Anaconda

Anaconda – это платформа управления пакетами приложений анализа данных (для языков Python и R) с открытым исходным кодом. Система позволяет специалистам по обработке данных быстро разворачивать проекты машинного обучения, предоставляя необходимую информацию для лиц, при ... Узнать больше про Anaconda

Логотип Deductor

Deductor от Loginom company

Deductor – это программная платформа продвинутой аналитики, позволяющая создавать законченные прикладные аналитические решения для бизнеса. Продукт снят с продажи. Узнать больше про Deductor

Логотип KNIME Analytics Platform

KNIME Analytics Platform от KNIME

KNIME Analytics Platform – это программная платформа анализа, интеграции данных и подготовки отчётности с открытым исходным кодом. Узнать больше про KNIME Analytics Platform

Логотип Elasticsearch

Elasticsearch от Elastic NV

Платформа Elasticsearch – это программное обеспечение с открытым исходным кодом, предназначенное для поиска, сбора, анализа и хранения текстовых данных с использованием интеллектуальных алгоритмов. Узнать больше про Elasticsearch

Логотип Tesseract OCR

Tesseract OCR от Google

Tesseract – это программный движок с открытым исходным кодом, позволяющий распознавать символы с поддержкой кодировки Unicode и возможностью распознавания более 130 языков, а также с возможностью дополнения для распознавания других языков. Узнать больше про Tesseract OCR

Руководство по покупке Платформы искусственного интеллекта

1. Что такое Платформы искусственного интеллекта

Программные платформы искусственного интеллекта (ИИ, англ. Artificial intelligence, AI) предлагают пользователям набор инструментов для создания интеллектуальных приложений. При помощи ИИ-платформ становится возможно применять технологии машинного обучения (ML), машинного зрения (OCR), обработки текста (NLP) и прочие.

2. Назначение и цели использования Платформы искусственного интеллекта

Программные системы и сервисы этой категории используются чаще всего программистами и аналитиками данных. Системы делятся на два крупных класса: прикладные платформы и платформы общего назначения. Прикладные платформы искусственного интеллекта имеют в своей оснастке готовые прикладные алгоритмы (распознавание изображения или голоса, обработка естественного языка, предсказательная и предиктивная аналитика) и инструменты для работы с данными (визуализация данных, drag-and-drop, анализ данных). Платформы общего назначения обладают общим инструментарием, требующим специальных навыков программирования для разработки решений под запросы бизнеса.

3. Обзор основных функций и возможностей Платформы искусственного интеллекта

Администрирование
Возможность администрирования позволяет осуществлять настройку и управление функциональностью системы, а также управление учётными записями и правами доступа к системе.
Бесплатно
Бесплатные продуты
Выполнение текстовых заданий
Функция Выполнение текстовых заданий в генеративных ИИ позволяет создавать тексты, изображения и видео на основе заданных текстовых заданий, включающих спецификацию целевого результата генерации. Обычно текстовое задание представляет собой ряд ассоциативных подсказок.
Дообучение
Функция Дообучение позволяет улучшить качество работы системы ИИ или модели, обучая её на дополнительных данных со стороны пользователя. Это может быть полезно, если модель не справляется с некоторыми задачами, если требуется улучшить ее точность или обеспечить специализацию для решения узконаправленных задач. Дообучение может быть выполнено на основе новых данных или на уже имеющихся данных, которые были ранее не использованы для обучения модели.
Импорт/экспорт данных
Возможность импорта и/или экспорта данных в продукте позволяет загрузить данные из наиболее популярных файловых форматов или выгрузить рабочие данные в файл для дальнейшего использования в другом ПО.
Интеллектуальная генерация данных
Функция Интеллектуальная генерация данных позволяет создавать структурированные данные, тексты, изображения, аудио и видео. Создание структурированных данных может быть использовано для массового создания новых служебных данных, заполнения пробелов в существующих данных, а также для улучшения их качества. Создания медиа-данных (изображения, текст, видео, аудио) позволяют ускорять и оптимизировать решение задач создания контента в различных отраслях.
Интеллектуальный анализ данных
Функция Интеллектуальный анализ данных в ИИ позволяет анализировать большие объемы данных в различных формах (структурированные данные, текст, изображения, аудио, видео или смешанные данные) и извлекать из них полезную информацию. Такой анализ включает в себя распознавание закономерностей, выявление тенденций и предсказание будущих значений.
Использование шаблонов задания
Функция Использование шаблонов задания позволяет использовать стандартные параметры и шаблонированные подсказки для генерации данных. Например, можно указать тему текста, стиль написания, ключевые слова, художественный стиль картины, подражание произведениям известного автора, задать эмоциональные направления и другие параметры. Это позволяет получить более контролируемый результат и улучшить качество создаваемых данных.
Многопользовательский доступ
Возможность многопользовательской доступа в программную систему обеспечивает одновременную работу нескольких пользователей на одной базе данных под собственными учётными записями. Пользователи в этом случае могут иметь отличающиеся права доступа к данным и функциям программного обеспечения.
Наличие API
Часто при использовании современного делового программного обеспечения возникает потребность автоматической передачи данных из одного ПО в другое. Например, может быть полезно автоматически передавать данные из Системы управления взаимоотношениями с клиентами (CRM) в Систему бухгалтерского учёта (БУ). Для обеспечения такого и подобных сопряжений программные системы оснащаются специальными Прикладными программными интерфейсами (англ. API, Application Programming Interface). С помощью таких API любые компетентные программисты смогут связать два программных продукта между собой для автоматического обмена информацией.
Отчётность и аналитика
Наличие у продукта функций подготовки отчётности и/или аналитики позволяют получать систематизированные и визуализированные данные из системы для последующего анализа и принятия решений на основе данных.
Обработка видео-данных
Обработка видео-данных позволяет системе работать с информацией в форме видео-потока при помощи методов искусственного интеллекта, проводить разбор, анализ или синтез (генерацию) информации.
Обработка визуально-графических данных
Обработка визуально-графических данных позволяет извлекать и генерировать информацию в виде графических данных, классифицировать, хранить и проводить первичный разбор полученной информации, преобразовывать или создавать новые графические материалы.
Обработка голосовых данных
Обработка голосовых данных позволяет работать с голосовыми данными, такими как распознавание речи, синтез речи и обработка естественного языка. Это позволяет создать системы, которые могут понимать и отвечать на голосовые запросы, а также генерировать речь на основе текста или других входных данных.
Обработка звуковых данных
Обработка звуковых данных (аудио-анализ) позволяет извлекать полезную информацию и смысл из звуковых сигналов, классифицировать, хранить и проводить первичный разбор полученных данных, а также генерировать аудиальную информацию.
Обработка структурированных данных
Обработка структурированных данных позволяет использовать для работы данные, которые организованы в виде форматированных хранилищ, баз данных, электронных таблиц и иных структурированных форматов, в которых элементы данных имеют адресацию для более эффективной обработки и анализа.
Обработка текстовых данных
Обработка данных текста представляет собой инструментарий для работы ИИ с информацией в виде текста путём структурирования исходного текста, анализа текстовых шаблонов (паттернов), оценки смысла (семантики) текста, а также применения текстовых генеративных алгоритмов.

4. Виды Платформы искусственного интеллекта

Системы компьютерного зрения
Программные системы компьютерного зрения (СКЗ, англ. Computer vision, CV) предназначены для обработки графической информации и извлечения из неё полезных данных. С помощью такого программного обеспечения может обрабатываться самая разнообразная информация от видеопотока в супермаркете до данных фармацевтических экспериментов в научной лаборатории.
Системы машинного обучения
Программные сервисы и Системы машинного обучения (СМО, англ. Machine learning, ML) позволяют формировать прогнозы и автоматически принимать деловые решения.
Системы обработки естественного языка
Системы обработки естественного языка (СОЕЯ, англ. Natural language processing, NLP) помогают пользователям получать информацию как из структурированных, так и из неструктурированных текстовых данных, включая анализ настроения, ключевых фраз, языка, тем и шаблонов. Эти решения используют машинное обучение, чтобы представить данные в наиболее верной интерпретации.
Системы распознавания речи
Программы и системы распознавания речи (СРР, англ. Speech Recognition Systems, SRS) используется для преобразования разговорного языка в текстовую информацию с помощью алгоритмов распознавания речи.
Системы видеоаналитики
Программные системы видеоаналитики (ВА, англ. Video Content Analysis, VCA) предназначены для интеллектуальной обработки видеопотока и извлечения из него полезных данных. С помощью данного программного обеспечения может обрабатываться самая разнообразная информация от видеопотока от уличных камер умного города до данных от видеокамеры умного станка для контроля качества продукции.
Платформы разговорного искусственного интеллекта
Платформы разговорного искусственного интеллекта (ПРИИ, англ. Intelligent Conversational Interaction, CAI) помогают разрабатывать и внедрять решения для автоматического интеллектуального обслуживания клиентов, взаимодействия с ними и в целом для организации взаимодействия человека с компьютером посредством понимания естественного языка и генерации речи.
Системы генеративного искусственного интеллекта
Системы генеративного искусственного интеллекта (ГИИ, англ. Generative Artificial Intelligence Systems, GenAI) – это вид искусственного интеллекта, который способен создавать новые данные на основе изученных моделей и информации.
Системы оптического распознавания символов
Программные системы и сервисы оптического распознавания символов (ОРС, англ. Optical character recognition, OCR) предназначены для сканирования текста, обработки содержимого и извлечения полезных данных из документов различных видов. С помощью такого программного обеспечения, как правило, обрабатываются счета-фактуры, акты, накладные, квитанции, клиентские формы, опросные листы и документы сотрудников.

5. Отличительные черты Платформы искусственного интеллекта

Чтобы претендовать на включение в категорию AI-платформ, программный продукт должен:

  • Обеспечивать возможность построения интеллектуальных приложений с поддержкой искусственного интеллекта;
  • Позволять пользователям создавать алгоритмы машинного обучения или предлагать готовые алгоритмы для создания приложений;
  • Предоставлять разработчика возможность подключать к собственным алгоритмам источники данных для обеспечения машинного обучения и адаптации производительности.

Сравнение Платформы искусственного интеллекта (AI)

Систем: 8

Entera

Entera

Логотип системы Entera

Entera – это облачный мультисервис для автоматической загрузки первичной документации в учётную систему 1С.

Plotly Dash

Plotly

Логотип системы Plotly Dash

Plotly Dash – это аналитический программный фреймворк Python для быстрого создания информационных панелей (дашбордов) для веб-браузера с использованием технологий ИАД, МО и ИИ.

Qlik Sense

Qlik

Логотип системы Qlik Sense

Qlik Sense – это программа для бизнес-аналитики (BI), помогающая выявить сведения, которые крайне сложно получить на основе традиционных запросов в базах данных.

Anaconda

Anaconda

Логотип системы Anaconda

Anaconda – это платформа управления пакетами приложений анализа данных (для языков Python и R) с открытым исходным кодом. Система позволяет специалистам по обработке данных быстро разворачивать проекты машинного обучения, предоставляя необходимую информацию для лиц, принимающих решения.

Deductor

Loginom company

Логотип системы Deductor

Deductor – это программная платформа продвинутой аналитики, позволяющая создавать законченные прикладные аналитические решения для бизнеса. Продукт снят с продажи.

KNIME Analytics Platform

KNIME

Логотип системы KNIME Analytics Platform

KNIME Analytics Platform – это программная платформа анализа, интеграции данных и подготовки отчётности с открытым исходным кодом.

Elasticsearch

Elastic NV

Логотип системы Elasticsearch

Платформа Elasticsearch – это программное обеспечение с открытым исходным кодом, предназначенное для поиска, сбора, анализа и хранения текстовых данных с использованием интеллектуальных алгоритмов.

Tesseract OCR

Google

Логотип системы Tesseract OCR

Tesseract – это программный движок с открытым исходным кодом, позволяющий распознавать символы с поддержкой кодировки Unicode и возможностью распознавания более 130 языков, а также с возможностью дополнения для распознавания других языков.

Руководство по покупке Платформы искусственного интеллекта

Что такое Платформы искусственного интеллекта

Программные платформы искусственного интеллекта (ИИ, англ. Artificial intelligence, AI) предлагают пользователям набор инструментов для создания интеллектуальных приложений. При помощи ИИ-платформ становится возможно применять технологии машинного обучения (ML), машинного зрения (OCR), обработки текста (NLP) и прочие.

Назначение и цели использования Платформы искусственного интеллекта

Программные системы и сервисы этой категории используются чаще всего программистами и аналитиками данных. Системы делятся на два крупных класса: прикладные платформы и платформы общего назначения. Прикладные платформы искусственного интеллекта имеют в своей оснастке готовые прикладные алгоритмы (распознавание изображения или голоса, обработка естественного языка, предсказательная и предиктивная аналитика) и инструменты для работы с данными (визуализация данных, drag-and-drop, анализ данных). Платформы общего назначения обладают общим инструментарием, требующим специальных навыков программирования для разработки решений под запросы бизнеса.

Обзор основных функций и возможностей Платформы искусственного интеллекта
Администрирование
Возможность администрирования позволяет осуществлять настройку и управление функциональностью системы, а также управление учётными записями и правами доступа к системе.
Бесплатно
Бесплатные продуты
Выполнение текстовых заданий
Функция Выполнение текстовых заданий в генеративных ИИ позволяет создавать тексты, изображения и видео на основе заданных текстовых заданий, включающих спецификацию целевого результата генерации. Обычно текстовое задание представляет собой ряд ассоциативных подсказок.
Дообучение
Функция Дообучение позволяет улучшить качество работы системы ИИ или модели, обучая её на дополнительных данных со стороны пользователя. Это может быть полезно, если модель не справляется с некоторыми задачами, если требуется улучшить ее точность или обеспечить специализацию для решения узконаправленных задач. Дообучение может быть выполнено на основе новых данных или на уже имеющихся данных, которые были ранее не использованы для обучения модели.
Импорт/экспорт данных
Возможность импорта и/или экспорта данных в продукте позволяет загрузить данные из наиболее популярных файловых форматов или выгрузить рабочие данные в файл для дальнейшего использования в другом ПО.
Интеллектуальная генерация данных
Функция Интеллектуальная генерация данных позволяет создавать структурированные данные, тексты, изображения, аудио и видео. Создание структурированных данных может быть использовано для массового создания новых служебных данных, заполнения пробелов в существующих данных, а также для улучшения их качества. Создания медиа-данных (изображения, текст, видео, аудио) позволяют ускорять и оптимизировать решение задач создания контента в различных отраслях.
Интеллектуальный анализ данных
Функция Интеллектуальный анализ данных в ИИ позволяет анализировать большие объемы данных в различных формах (структурированные данные, текст, изображения, аудио, видео или смешанные данные) и извлекать из них полезную информацию. Такой анализ включает в себя распознавание закономерностей, выявление тенденций и предсказание будущих значений.
Использование шаблонов задания
Функция Использование шаблонов задания позволяет использовать стандартные параметры и шаблонированные подсказки для генерации данных. Например, можно указать тему текста, стиль написания, ключевые слова, художественный стиль картины, подражание произведениям известного автора, задать эмоциональные направления и другие параметры. Это позволяет получить более контролируемый результат и улучшить качество создаваемых данных.
Многопользовательский доступ
Возможность многопользовательской доступа в программную систему обеспечивает одновременную работу нескольких пользователей на одной базе данных под собственными учётными записями. Пользователи в этом случае могут иметь отличающиеся права доступа к данным и функциям программного обеспечения.
Наличие API
Часто при использовании современного делового программного обеспечения возникает потребность автоматической передачи данных из одного ПО в другое. Например, может быть полезно автоматически передавать данные из Системы управления взаимоотношениями с клиентами (CRM) в Систему бухгалтерского учёта (БУ). Для обеспечения такого и подобных сопряжений программные системы оснащаются специальными Прикладными программными интерфейсами (англ. API, Application Programming Interface). С помощью таких API любые компетентные программисты смогут связать два программных продукта между собой для автоматического обмена информацией.
Отчётность и аналитика
Наличие у продукта функций подготовки отчётности и/или аналитики позволяют получать систематизированные и визуализированные данные из системы для последующего анализа и принятия решений на основе данных.
Обработка видео-данных
Обработка видео-данных позволяет системе работать с информацией в форме видео-потока при помощи методов искусственного интеллекта, проводить разбор, анализ или синтез (генерацию) информации.
Обработка визуально-графических данных
Обработка визуально-графических данных позволяет извлекать и генерировать информацию в виде графических данных, классифицировать, хранить и проводить первичный разбор полученной информации, преобразовывать или создавать новые графические материалы.
Обработка голосовых данных
Обработка голосовых данных позволяет работать с голосовыми данными, такими как распознавание речи, синтез речи и обработка естественного языка. Это позволяет создать системы, которые могут понимать и отвечать на голосовые запросы, а также генерировать речь на основе текста или других входных данных.
Обработка звуковых данных
Обработка звуковых данных (аудио-анализ) позволяет извлекать полезную информацию и смысл из звуковых сигналов, классифицировать, хранить и проводить первичный разбор полученных данных, а также генерировать аудиальную информацию.
Обработка структурированных данных
Обработка структурированных данных позволяет использовать для работы данные, которые организованы в виде форматированных хранилищ, баз данных, электронных таблиц и иных структурированных форматов, в которых элементы данных имеют адресацию для более эффективной обработки и анализа.
Обработка текстовых данных
Обработка данных текста представляет собой инструментарий для работы ИИ с информацией в виде текста путём структурирования исходного текста, анализа текстовых шаблонов (паттернов), оценки смысла (семантики) текста, а также применения текстовых генеративных алгоритмов.
Виды Платформы искусственного интеллекта
Системы компьютерного зрения
Программные системы компьютерного зрения (СКЗ, англ. Computer vision, CV) предназначены для обработки графической информации и извлечения из неё полезных данных. С помощью такого программного обеспечения может обрабатываться самая разнообразная информация от видеопотока в супермаркете до данных фармацевтических экспериментов в научной лаборатории.
Системы машинного обучения
Программные сервисы и Системы машинного обучения (СМО, англ. Machine learning, ML) позволяют формировать прогнозы и автоматически принимать деловые решения.
Системы обработки естественного языка
Системы обработки естественного языка (СОЕЯ, англ. Natural language processing, NLP) помогают пользователям получать информацию как из структурированных, так и из неструктурированных текстовых данных, включая анализ настроения, ключевых фраз, языка, тем и шаблонов. Эти решения используют машинное обучение, чтобы представить данные в наиболее верной интерпретации.
Системы распознавания речи
Программы и системы распознавания речи (СРР, англ. Speech Recognition Systems, SRS) используется для преобразования разговорного языка в текстовую информацию с помощью алгоритмов распознавания речи.
Системы видеоаналитики
Программные системы видеоаналитики (ВА, англ. Video Content Analysis, VCA) предназначены для интеллектуальной обработки видеопотока и извлечения из него полезных данных. С помощью данного программного обеспечения может обрабатываться самая разнообразная информация от видеопотока от уличных камер умного города до данных от видеокамеры умного станка для контроля качества продукции.
Платформы разговорного искусственного интеллекта
Платформы разговорного искусственного интеллекта (ПРИИ, англ. Intelligent Conversational Interaction, CAI) помогают разрабатывать и внедрять решения для автоматического интеллектуального обслуживания клиентов, взаимодействия с ними и в целом для организации взаимодействия человека с компьютером посредством понимания естественного языка и генерации речи.
Системы генеративного искусственного интеллекта
Системы генеративного искусственного интеллекта (ГИИ, англ. Generative Artificial Intelligence Systems, GenAI) – это вид искусственного интеллекта, который способен создавать новые данные на основе изученных моделей и информации.
Системы оптического распознавания символов
Программные системы и сервисы оптического распознавания символов (ОРС, англ. Optical character recognition, OCR) предназначены для сканирования текста, обработки содержимого и извлечения полезных данных из документов различных видов. С помощью такого программного обеспечения, как правило, обрабатываются счета-фактуры, акты, накладные, квитанции, клиентские формы, опросные листы и документы сотрудников.
Отличительные черты Платформы искусственного интеллекта

Чтобы претендовать на включение в категорию AI-платформ, программный продукт должен:

  • Обеспечивать возможность построения интеллектуальных приложений с поддержкой искусственного интеллекта;
  • Позволять пользователям создавать алгоритмы машинного обучения или предлагать готовые алгоритмы для создания приложений;
  • Предоставлять разработчика возможность подключать к собственным алгоритмам источники данных для обеспечения машинного обучения и адаптации производительности.
Soware логотип
Soware является основным источником сведений о прикладном программном обеспечении для предприятий. Используя наш обширный каталог категорий и программных продуктов, лица, принимающие решения в России и странах СНГ получают бесплатный инструмент для выбора и сравнения систем от разных разработчиков
Соваре, ООО Санкт-Петербург, Россия info@soware.ru
2024 Soware.Ru - Умный выбор систем для бизнеса