Программные платформы искусственного интеллекта (ИИ, англ. Artificial intelligence, AI) предлагают пользователям набор инструментов для создания интеллектуальных приложений. При помощи ИИ-платформ становится возможно применять технологии машинного обучения (ML), машинного зрения (OCR), обработки текста (NLP) и прочие.
Классификатор программных продуктов Соваре определяет конкретные функциональные критерии для систем. Чтобы претендовать на включение в категорию AI-платформ, программный продукт должен:
Платформы искусственного интеллекта (AI)
Платформы разработки искусственного интеллекта и нейросетей (AI Dev)
Платформы разговорного искусственного интеллекта (ПРИИ)
Системы генеративного искусственного интеллекта (ГИИ)
Прикладные приложения искусственного интеллекта

Netfira Platform — это SaaS-решение для автоматизации обработки документов и обмена данными в B2B-сегменте, оптимизирующее документооборот. Узнать больше про Netfira Platform

Cognigy.AI Platform — это платформа разговорного ИИ для корпоративных контакт-центров, обеспечивающая персонализированный мультиязычный сервис и интеграцию с бизнес-системами. Узнать больше про Cognigy.AI Platform

Konfuzio — это система интеллектуальной обработки документов, предназначенная для извлечения данных из документов с помощью ИИ, автоматизируя рутинные процессы в бизнесе. Узнать больше про Konfuzio

IDA — Intelligent Document Analysis — это система интеллектуальной обработки документов для автоматизации извлечения данных из неструктурированных источников. Узнать больше про IDA - Intelligent Document Analysis

Bosch Video Management System — это ПО для интеллектуального видеонаблюдения, обеспечивающее управление видеопотоками и анализ данных в системах безопасности предприятий и объектов. Узнать больше про Bosch Video Management System

Halcon — это система компьютерного зрения для промышленного применения, предназначенная для инспекции поверхностей, контроля качества, управления роботами и классификации объектов. Узнать больше про Halcon

ZenML — это фреймворк MLOps и LLMOps с открытым кодом для управления инфраструктурой в работе команд дата-сайентистов. Узнать больше про ZenML

Parloa Platform — это платформа разговорного ИИ для контакт-центров, автоматизирующая взаимодействие с клиентами и поддерживающая агентов. Узнать больше про Parloa Platform

VIER Conversational AI — это платформа разговорного ИИ для автоматизации и анализа коммуникационных процессов в бизнесе, объединяющая ИИ и человеческий опыт. Узнать больше про VIER Conversational AI

Basler Machine Vision — это система компьютерного зрения для автоматизации процессов в промышленности, медицине, логистике и других сферах. Узнать больше про Basler Machine Vision

USU Chatbot Software — это платформа разговорного ИИ для автоматизации IT- и сервисной поддержки, оптимизации рабочих процессов и снижения затрат предприятий. Узнать больше про USU Chatbot

Document Analyzer — это система интеллектуальной обработки документов для поиска и анализа структурированных и неструктурированных данных в корпоративных системах. Узнать больше про Document Analyzer

Voicebot AI — это платформа разговорного ИИ для автоматизации обслуживания клиентов, позволяющая создавать голосовых ботов, интегрировать решения и автоматизировать рабочие процессы. Узнать больше про Voicebot AI

Scanbot Data Capture SDK — это программный комплект разработки (SDK) для интеграции функций компьютерного зрения и машинного обучения в приложения, обеспечивающий сканирование документов и штрих‑кодов, оптическое распознавание символов (OCR) и экстракцию данных для корп ... Узнать больше про Scanbot Data Capture SDK

Scanbot Document Scanner SDK — это программный комплект разработки (SDK) для интеграции функций сканирования документов и штрих‑кодов в мобильные приложения и веб‑сервисы, использующий технологии компьютерного зрения и машинного обучения для корпоративных клиентов. Узнать больше про Scanbot Document Scanner SDK
Программные платформы искусственного интеллекта (ИИ, англ. Artificial intelligence, AI) предлагают пользователям набор инструментов для создания интеллектуальных приложений. При помощи ИИ-платформ становится возможно применять технологии машинного обучения (ML), машинного зрения (OCR), обработки текста (NLP) и прочие.
Искусственный интеллект (ИИ) как деятельность представляет собой комплекс мероприятий, направленных на разработку, внедрение и использование программных и технологических решений, способных имитировать человеческие когнитивные функции, такие как обучение, анализ, решение задач и обработка информации. В рамках этой деятельности осуществляется создание алгоритмов и моделей, которые позволяют системам обрабатывать большие объёмы данных, выявлять закономерности, делать прогнозы и принимать решения на основе полученной информации. ИИ активно применяется в различных сферах, включая бизнес, медицину, образование, транспорт и многие другие, что обуславливает его значимость для современного общества и экономики.
Среди ключевых аспектов деятельности в области ИИ можно выделить:
Важную роль в развитии и применении ИИ играют цифровые (программные) решения, которые обеспечивают необходимую инфраструктуру и инструменты для реализации возможностей искусственного интеллекта. Платформы ИИ, включающие набор библиотек, фреймворков и сервисов, существенно упрощают процесс разработки интеллектуальных приложений и способствуют более широкому распространению технологий ИИ в различных отраслях.
Программные системы и сервисы этой категории используются чаще всего программистами и аналитиками данных. Системы делятся на два крупных класса: прикладные платформы и платформы общего назначения. Прикладные платформы искусственного интеллекта имеют в своей оснастке готовые прикладные алгоритмы (распознавание изображения или голоса, обработка естественного языка, предсказательная и предиктивная аналитика) и инструменты для работы с данными (визуализация данных, drag-and-drop, анализ данных). Платформы общего назначения обладают общим инструментарием, требующим специальных навыков программирования для разработки решений под запросы бизнеса.
Платформы искусственного интеллекта в основном используют следующие группы пользователей:
IT-компании и стартапы, разрабатывающие интеллектуальные приложения и сервисы, нуждающиеся в инструментах для внедрения технологий машинного обучения и обработки данных.
Крупные корпорации и предприятия, стремящиеся автоматизировать бизнес-процессы, повысить эффективность работы и качество принимаемых решений с помощью аналитических возможностей ИИ.
Научные и образовательные учреждения, проводящие исследования в области искусственного интеллекта, машинного обучения и разрабатывающие учебные программы по соответствующим направлениям.
Компании, работающие в сфере финансов и банковского дела, использующие ИИ для анализа больших объёмов данных, выявления мошеннических операций, прогнозирования трендов и управления рисками.
Медицинские и фармацевтические организации, применяющие технологии ИИ для анализа медицинских изображений, разработки новых лекарственных препаратов, диагностики заболеваний и персонализации лечения.
Компании в сфере электронной коммерции и ритейла, использующие ИИ для анализа поведения потребителей, оптимизации ассортимента, управления запасами и повышения эффективности маркетинговых кампаний.
На основе своего экспертного мнения Соваре рекомендует наиболее внимательно подходить к выбору решения. При выборе программного продукта из функционального класса Платформы искусственного интеллекта необходимо учитывать ряд ключевых факторов, которые определят пригодность платформы для решения конкретных бизнес-задач. Важно оценить масштаб деятельности компании: для малого бизнеса могут подойти облачные решения с гибкими тарифными планами и минимальным порогом входа, тогда как крупным корпорациям потребуются масштабируемые on-premises решения с возможностью глубокой кастомизации и интеграции с существующими ИТ-инфраструктурами. Также следует проанализировать отраслевые требования и нормативные ограничения — например, в финансовом секторе и здравоохранении действуют строгие правила обработки и хранения данных, что накладывает особые требования к безопасности и соответствию стандартам. Не менее важны технические ограничения, включая совместимость с используемыми аппаратными и программными ресурсами, требования к производительности и объёму обрабатываемых данных.
Ключевые аспекты при принятии решения:
После анализа перечисленных факторов следует провести пилотный проект или тестирование платформы на ограниченном объёме данных и задач, чтобы оценить её эффективность и удобство использования в реальных условиях. Также целесообразно обратить внимание на репутацию разработчика, наличие успешных кейсов внедрения в аналогичных отраслях и готовность поставщика предоставлять техническую поддержку и обновления в долгосрочной перспективе.
Программные платформы искусственного интеллекта (ИИ) предоставляют широкий спектр возможностей для бизнеса и организаций, позволяя автоматизировать процессы, повысить эффективность работы и получить конкурентные преимущества. Среди ключевых выгод и преимуществ использования таких платформ можно выделить:
Автоматизация рутинных задач. Платформы ИИ позволяют автоматизировать выполнение повторяющихся операций, освобождая человеческие ресурсы для более сложных и творческих задач. Это снижает операционные затраты и повышает производительность труда.
Повышение точности и качества данных. Использование алгоритмов машинного обучения и обработки данных помогает выявлять ошибки, аномалии и несоответствия в больших объёмах информации, повышая тем самым качество данных и обоснованность принимаемых решений.
Ускорение процесса принятия решений. ИИ-платформы обеспечивают быстрый анализ больших объёмов данных и выявление закономерностей, что позволяет руководству принимать взвешенные решения в кратчайшие сроки.
Персонализация услуг и продуктов. С помощью технологий обработки естественного языка и машинного обучения платформы ИИ помогают анализировать предпочтения и поведение пользователей, что даёт возможность предлагать персонализированные услуги и продукты, повышая удовлетворённость клиентов.
Оптимизация бизнес-процессов. Внедрение ИИ-решений позволяет оптимизировать логистику, управление запасами, производственные процессы и другие аспекты деятельности компании, сокращая издержки и улучшая операционную эффективность.
Развитие инновационных продуктов и услуг. Платформы ИИ открывают возможности для разработки новых продуктов и услуг, основанных на передовых технологиях, что способствует расширению рынка и укреплению конкурентных позиций компании.
Улучшение клиентского сервиса. Применение чат-ботов и систем обработки естественного языка позволяет автоматизировать общение с клиентами, обеспечивая быстрый и качественный ответ на их запросы, что повышает уровень удовлетворённости и лояльности клиентов.
Классификатор программных продуктов Соваре определяет конкретные функциональные критерии для систем. Чтобы претендовать на включение в категорию AI-платформ, программный продукт должен:
По аналитическим данным Соваре, в 2025 году на рынке платформ искусственного интеллекта ожидается усиление тенденций к интеграции мультимодальных моделей, развитию объяснимого ИИ, повышению уровня безопасности и конфиденциальности данных, расширению применения генеративных моделей в бизнес-процессах, углублению интеграции ИИ с облачными технологиями, а также к росту спроса на инструменты для автоматизации разработки интеллектуальных приложений.
Мультимодальные модели. Развитие моделей, способных одновременно обрабатывать текст, изображения, аудио и видео, что позволит создавать более комплексные и эффективные решения для анализа больших объёмов разнородных данных.
Объяснимый ИИ. Увеличение спроса на технологии, обеспечивающие прозрачность и понятность алгоритмов принятия решений ИИ, что важно для соблюдения регуляторных требований и повышения доверия пользователей.
Безопасность и конфиденциальность. Усиление мер по защите данных при работе с ИИ-платформами, внедрение передовых криптографических методов и механизмов анонимизации для обеспечения безопасности чувствительных данных.
Генеративные модели в бизнесе. Расширение применения генеративных моделей для автоматизации создания контента, оптимизации бизнес-процессов, разработки персонализированных предложений и улучшения клиентского опыта.
Интеграция с облачными технологиями. Углубление интеграции ИИ-платформ с облачными сервисами, что обеспечит масштабируемость, гибкость и снижение затрат на инфраструктуру для конечных пользователей.
Автоматизация разработки. Развитие инструментов low-code/no-code для создания интеллектуальных приложений, что позволит ускорить процесс разработки и снизить порог входа для непрофессиональных разработчиков.
Персонализация и адаптивность. Рост спроса на ИИ-решения, способные адаптироваться под индивидуальные потребности пользователей и предоставлять персонализированные рекомендации и сервисы.
Netfira

Netfira Platform — это SaaS-решение для автоматизации обработки документов и обмена данными в B2B-сегменте, оптимизирующее документооборот.
Cognigy

Cognigy.AI Platform — это платформа разговорного ИИ для корпоративных контакт-центров, обеспечивающая персонализированный мультиязычный сервис и интеграцию с бизнес-системами.
Helm & Nagel

Konfuzio — это система интеллектуальной обработки документов, предназначенная для извлечения данных из документов с помощью ИИ, автоматизируя рутинные процессы в бизнесе.
PLANET AI

IDA — Intelligent Document Analysis — это система интеллектуальной обработки документов для автоматизации извлечения данных из неструктурированных источников.
Bosch Security Systems

Bosch Video Management System — это ПО для интеллектуального видеонаблюдения, обеспечивающее управление видеопотоками и анализ данных в системах безопасности предприятий и объектов.
MVTec Software GmbH

Halcon — это система компьютерного зрения для промышленного применения, предназначенная для инспекции поверхностей, контроля качества, управления роботами и классификации объектов.
ZenML

ZenML — это фреймворк MLOps и LLMOps с открытым кодом для управления инфраструктурой в работе команд дата-сайентистов.
Parloa

Parloa Platform — это платформа разговорного ИИ для контакт-центров, автоматизирующая взаимодействие с клиентами и поддерживающая агентов.
VIER

VIER Conversational AI — это платформа разговорного ИИ для автоматизации и анализа коммуникационных процессов в бизнесе, объединяющая ИИ и человеческий опыт.
Basler AG

Basler Machine Vision — это система компьютерного зрения для автоматизации процессов в промышленности, медицине, логистике и других сферах.
USU

USU Chatbot Software — это платформа разговорного ИИ для автоматизации IT- и сервисной поддержки, оптимизации рабочих процессов и снижения затрат предприятий.
IntraFind

Document Analyzer — это система интеллектуальной обработки документов для поиска и анализа структурированных и неструктурированных данных в корпоративных системах.
babelforce

Voicebot AI — это платформа разговорного ИИ для автоматизации обслуживания клиентов, позволяющая создавать голосовых ботов, интегрировать решения и автоматизировать рабочие процессы.
Scanbot SDK

Scanbot Data Capture SDK — это программный комплект разработки (SDK) для интеграции функций компьютерного зрения и машинного обучения в приложения, обеспечивающий сканирование документов и штрих‑кодов, оптическое распознавание символов (OCR) и экстракцию данных для корпоративных пользователей.
Scanbot SDK

Scanbot Document Scanner SDK — это программный комплект разработки (SDK) для интеграции функций сканирования документов и штрих‑кодов в мобильные приложения и веб‑сервисы, использующий технологии компьютерного зрения и машинного обучения для корпоративных клиентов.
Программные платформы искусственного интеллекта (ИИ, англ. Artificial intelligence, AI) предлагают пользователям набор инструментов для создания интеллектуальных приложений. При помощи ИИ-платформ становится возможно применять технологии машинного обучения (ML), машинного зрения (OCR), обработки текста (NLP) и прочие.
Искусственный интеллект (ИИ) как деятельность представляет собой комплекс мероприятий, направленных на разработку, внедрение и использование программных и технологических решений, способных имитировать человеческие когнитивные функции, такие как обучение, анализ, решение задач и обработка информации. В рамках этой деятельности осуществляется создание алгоритмов и моделей, которые позволяют системам обрабатывать большие объёмы данных, выявлять закономерности, делать прогнозы и принимать решения на основе полученной информации. ИИ активно применяется в различных сферах, включая бизнес, медицину, образование, транспорт и многие другие, что обуславливает его значимость для современного общества и экономики.
Среди ключевых аспектов деятельности в области ИИ можно выделить:
Важную роль в развитии и применении ИИ играют цифровые (программные) решения, которые обеспечивают необходимую инфраструктуру и инструменты для реализации возможностей искусственного интеллекта. Платформы ИИ, включающие набор библиотек, фреймворков и сервисов, существенно упрощают процесс разработки интеллектуальных приложений и способствуют более широкому распространению технологий ИИ в различных отраслях.
Программные системы и сервисы этой категории используются чаще всего программистами и аналитиками данных. Системы делятся на два крупных класса: прикладные платформы и платформы общего назначения. Прикладные платформы искусственного интеллекта имеют в своей оснастке готовые прикладные алгоритмы (распознавание изображения или голоса, обработка естественного языка, предсказательная и предиктивная аналитика) и инструменты для работы с данными (визуализация данных, drag-and-drop, анализ данных). Платформы общего назначения обладают общим инструментарием, требующим специальных навыков программирования для разработки решений под запросы бизнеса.
Платформы искусственного интеллекта в основном используют следующие группы пользователей:
IT-компании и стартапы, разрабатывающие интеллектуальные приложения и сервисы, нуждающиеся в инструментах для внедрения технологий машинного обучения и обработки данных.
Крупные корпорации и предприятия, стремящиеся автоматизировать бизнес-процессы, повысить эффективность работы и качество принимаемых решений с помощью аналитических возможностей ИИ.
Научные и образовательные учреждения, проводящие исследования в области искусственного интеллекта, машинного обучения и разрабатывающие учебные программы по соответствующим направлениям.
Компании, работающие в сфере финансов и банковского дела, использующие ИИ для анализа больших объёмов данных, выявления мошеннических операций, прогнозирования трендов и управления рисками.
Медицинские и фармацевтические организации, применяющие технологии ИИ для анализа медицинских изображений, разработки новых лекарственных препаратов, диагностики заболеваний и персонализации лечения.
Компании в сфере электронной коммерции и ритейла, использующие ИИ для анализа поведения потребителей, оптимизации ассортимента, управления запасами и повышения эффективности маркетинговых кампаний.
На основе своего экспертного мнения Соваре рекомендует наиболее внимательно подходить к выбору решения. При выборе программного продукта из функционального класса Платформы искусственного интеллекта необходимо учитывать ряд ключевых факторов, которые определят пригодность платформы для решения конкретных бизнес-задач. Важно оценить масштаб деятельности компании: для малого бизнеса могут подойти облачные решения с гибкими тарифными планами и минимальным порогом входа, тогда как крупным корпорациям потребуются масштабируемые on-premises решения с возможностью глубокой кастомизации и интеграции с существующими ИТ-инфраструктурами. Также следует проанализировать отраслевые требования и нормативные ограничения — например, в финансовом секторе и здравоохранении действуют строгие правила обработки и хранения данных, что накладывает особые требования к безопасности и соответствию стандартам. Не менее важны технические ограничения, включая совместимость с используемыми аппаратными и программными ресурсами, требования к производительности и объёму обрабатываемых данных.
Ключевые аспекты при принятии решения:
После анализа перечисленных факторов следует провести пилотный проект или тестирование платформы на ограниченном объёме данных и задач, чтобы оценить её эффективность и удобство использования в реальных условиях. Также целесообразно обратить внимание на репутацию разработчика, наличие успешных кейсов внедрения в аналогичных отраслях и готовность поставщика предоставлять техническую поддержку и обновления в долгосрочной перспективе.
Программные платформы искусственного интеллекта (ИИ) предоставляют широкий спектр возможностей для бизнеса и организаций, позволяя автоматизировать процессы, повысить эффективность работы и получить конкурентные преимущества. Среди ключевых выгод и преимуществ использования таких платформ можно выделить:
Автоматизация рутинных задач. Платформы ИИ позволяют автоматизировать выполнение повторяющихся операций, освобождая человеческие ресурсы для более сложных и творческих задач. Это снижает операционные затраты и повышает производительность труда.
Повышение точности и качества данных. Использование алгоритмов машинного обучения и обработки данных помогает выявлять ошибки, аномалии и несоответствия в больших объёмах информации, повышая тем самым качество данных и обоснованность принимаемых решений.
Ускорение процесса принятия решений. ИИ-платформы обеспечивают быстрый анализ больших объёмов данных и выявление закономерностей, что позволяет руководству принимать взвешенные решения в кратчайшие сроки.
Персонализация услуг и продуктов. С помощью технологий обработки естественного языка и машинного обучения платформы ИИ помогают анализировать предпочтения и поведение пользователей, что даёт возможность предлагать персонализированные услуги и продукты, повышая удовлетворённость клиентов.
Оптимизация бизнес-процессов. Внедрение ИИ-решений позволяет оптимизировать логистику, управление запасами, производственные процессы и другие аспекты деятельности компании, сокращая издержки и улучшая операционную эффективность.
Развитие инновационных продуктов и услуг. Платформы ИИ открывают возможности для разработки новых продуктов и услуг, основанных на передовых технологиях, что способствует расширению рынка и укреплению конкурентных позиций компании.
Улучшение клиентского сервиса. Применение чат-ботов и систем обработки естественного языка позволяет автоматизировать общение с клиентами, обеспечивая быстрый и качественный ответ на их запросы, что повышает уровень удовлетворённости и лояльности клиентов.
Классификатор программных продуктов Соваре определяет конкретные функциональные критерии для систем. Чтобы претендовать на включение в категорию AI-платформ, программный продукт должен:
По аналитическим данным Соваре, в 2025 году на рынке платформ искусственного интеллекта ожидается усиление тенденций к интеграции мультимодальных моделей, развитию объяснимого ИИ, повышению уровня безопасности и конфиденциальности данных, расширению применения генеративных моделей в бизнес-процессах, углублению интеграции ИИ с облачными технологиями, а также к росту спроса на инструменты для автоматизации разработки интеллектуальных приложений.
Мультимодальные модели. Развитие моделей, способных одновременно обрабатывать текст, изображения, аудио и видео, что позволит создавать более комплексные и эффективные решения для анализа больших объёмов разнородных данных.
Объяснимый ИИ. Увеличение спроса на технологии, обеспечивающие прозрачность и понятность алгоритмов принятия решений ИИ, что важно для соблюдения регуляторных требований и повышения доверия пользователей.
Безопасность и конфиденциальность. Усиление мер по защите данных при работе с ИИ-платформами, внедрение передовых криптографических методов и механизмов анонимизации для обеспечения безопасности чувствительных данных.
Генеративные модели в бизнесе. Расширение применения генеративных моделей для автоматизации создания контента, оптимизации бизнес-процессов, разработки персонализированных предложений и улучшения клиентского опыта.
Интеграция с облачными технологиями. Углубление интеграции ИИ-платформ с облачными сервисами, что обеспечит масштабируемость, гибкость и снижение затрат на инфраструктуру для конечных пользователей.
Автоматизация разработки. Развитие инструментов low-code/no-code для создания интеллектуальных приложений, что позволит ускорить процесс разработки и снизить порог входа для непрофессиональных разработчиков.
Персонализация и адаптивность. Рост спроса на ИИ-решения, способные адаптироваться под индивидуальные потребности пользователей и предоставлять персонализированные рекомендации и сервисы.