Логотип Soware
Логотип Soware

Северо-Американские (США) Платформы интеллектуальной обработки данных

Платформы интеллектуальной обработки данных (ПИОД, англ. Intelligent Data Processing Platforms, IDP) – это комплексные решения, предназначенные для анализа и обработки больших объёмов данных с использованием методов машинного обучения, искусственного интеллекта и других технологий. Они позволяют автоматизировать процессы извлечения, трансформации и загрузки данных, а также обеспечивают возможности для глубокого анализа, прогнозирования и визуализации информации.

Для того, чтобы быть представленными на рынке Платформы интеллектуальной обработки данных, системы должны иметь следующие функциональные возможности:

  • автоматизация процессов ETL (извлечения, трансформации и загрузки данных), позволяющая эффективно работать с разнородными источниками данных,
  • реализация алгоритмов машинного обучения и методов искусственного интеллекта для выявления закономерностей и аномалий в данных,
  • механизмы глубокого анализа данных с применением статистических и математических методов,
  • инструменты для построения прогнозных моделей на основе исторических данных и текущих трендов,
  • средства визуализации аналитических данных для наглядного представления результатов обработки информации.

Сравнение Платформы интеллектуальной обработки данных

Выбрать по критериям:

Категории
Подходит для
Функции
Особенности
Тарификация
Развёртывание
Графический интерфейс
Поддержка языков
Страна происхождения
Сортировать:
Систем: 3
Логотип Tesseract OCR

Tesseract OCR от Google

Tesseract — это программный движок с открытым исходным кодом, позволяющий распознавать символы с поддержкой кодировки Unicode и возможностью распознавания более 130 языков, а также с возможностью дополнения для распознавания других языков. Узнать больше про Tesseract OCR

Логотип Diffbot

Diffbot от Diffbot

Diffbot — это онлайн-сервис, включающий в себя набор инструментов (Extraction APIs, Knowledge Graph, Crawlbot) для превращения неструктурированных веб-данных в структурированную и полезную для бизнеса информацию. Узнать больше про Diffbot

Логотип ABBYY FineReader

ABBYY FineReader от ABBYY

ABBYY FineReader — это универсальное программное приложение для распознавания текста, предназначенное для повышения производительности бизнеса, быстрого захвата документов на бумажных носителях и получения на выходе оцифрованных файлв в форматах PDF, DOC и прочих. Узнать больше про ABBYY FineReader

Руководство по покупке Платформы интеллектуальной обработки данных

1. Что такое Платформы интеллектуальной обработки данных

Платформы интеллектуальной обработки данных (ПИОД, англ. Intelligent Data Processing Platforms, IDP) – это комплексные решения, предназначенные для анализа и обработки больших объёмов данных с использованием методов машинного обучения, искусственного интеллекта и других технологий. Они позволяют автоматизировать процессы извлечения, трансформации и загрузки данных, а также обеспечивают возможности для глубокого анализа, прогнозирования и визуализации информации.

2. Зачем бизнесу Платформы интеллектуальной обработки данных

Интеллектуальная обработка данных как деятельность представляет собой комплекс мероприятий, направленных на анализ и обработку значительных объёмов информации с применением технологий искусственного интеллекта, машинного обучения и других современных методов. В рамках этой деятельности осуществляется автоматизация процессов извлечения данных из различных источников, их трансформация в удобный для анализа формат и загрузка в системы для последующей обработки, а также реализуются возможности глубокого анализа, выявления закономерностей, прогнозирования тенденций и визуализации полученных результатов. Это позволяет организациям принимать обоснованные управленческие решения, оптимизировать бизнес-процессы и повышать эффективность работы.

Среди ключевых аспектов интеллектуальной обработки данных можно выделить:

  • работу с неструктурированными и полуструктурированными данными,
  • применение алгоритмов машинного обучения для выявления скрытых закономерностей,
  • использование методов обработки естественного языка для анализа текстовых данных,
  • построение прогнозных моделей на основе исторических данных,
  • визуализацию аналитических данных для облегчения их восприятия и интерпретации,
  • интеграцию с различными источниками данных и системами хранения информации.

Важную роль в процессе интеллектуальной обработки данных играют цифровые (программные) решения, которые обеспечивают необходимую инфраструктуру и инструменты для реализации всех этапов работы с данными — от их сбора до анализа и визуализации результатов. Такие решения позволяют существенно повысить скорость и качество обработки информации, снизить трудозатраты и минимизировать вероятность ошибок, связанных с человеческим фактором.

3. Назначение и цели использования Платформы интеллектуальной обработки данных

Платформы интеллектуальной обработки данных предназначены для анализа и обработки значительных объёмов данных с применением методов машинного обучения и технологий искусственного интеллекта. Они автоматизируют процессы извлечения данных из различных источников, их трансформации в удобный для анализа формат и загрузки в целевые системы, что позволяет существенно сократить время и ресурсы, необходимые для предварительной обработки информации, и повысить качество данных для последующего анализа.

Кроме того, платформы интеллектуальной обработки данных обеспечивают расширенные возможности для глубокого анализа информации, построения прогностических моделей и визуализации результатов. С их помощью можно выявлять скрытые закономерности и тренды в данных, осуществлять прогнозирование на основе исторических данных, создавать интерактивные дашборды и отчёты для наглядного представления информации, что способствует более обоснованному принятию решений и повышению эффективности бизнес-процессов.

4. Основные пользователи Платформы интеллектуальной обработки данных

Платформы интеллектуальной обработки данных в основном используют следующие группы пользователей:

  • крупные корпорации и холдинги для анализа рыночных тенденций, оптимизации бизнес-процессов и повышения эффективности управления ресурсами;
  • финансовые учреждения и страховые компании для оценки рисков, выявления мошеннических операций и прогнозирования финансовых показателей;
  • компании в сфере электронной коммерции для анализа поведения пользователей, персонализации предложений и оптимизации ассортимента товаров;
  • предприятия промышленности и логистики для оптимизации цепочек поставок, прогнозирования спроса и управления запасами;
  • научно-исследовательские организации и университеты для анализа больших данных в научных исследованиях и разработки новых технологий;
  • государственные учреждения и органы власти для анализа социально-экономических показателей, оптимизации работы государственных сервисов и повышения эффективности управления ресурсами.

5. Обзор основных функций и возможностей Платформы интеллектуальной обработки данных

Администрирование
Возможность администрирования позволяет осуществлять настройку и управление функциональностью системы, а также управление учётными записями и правами доступа к системе.
Дообучение
Функции Дообучения позволяют улучшить качество работы системы ИИ или модели, обучая её на дополнительных данных со стороны пользователя. Это может быть полезно, если модель не справляется с некоторыми задачами, если требуется улучшить ее точность или обеспечить специализацию для решения узконаправленных задач. Дообучение может быть выполнено на основе новых данных или на уже имеющихся данных, которые были ранее не использованы для обучения модели.
Импорт/экспорт данных
Возможность импорта и/или экспорта данных в продукте позволяет загрузить данные из наиболее популярных файловых форматов или выгрузить рабочие данные в файл для дальнейшего использования в другом ПО.
Интеграция данных
Функции Интеграции данных позволяют объединять и синхронизировать информацию из различных источников и форматов в единую систему, обеспечивая её целостность, актуальность и доступность для последующего анализа и обработки в режиме реального времени.
Интеллектуальный анализ данных
Функция Интеллектуальный анализ данных в ИИ позволяет анализировать большие объемы данных в различных формах (структурированные данные, текст, изображения, аудио, видео или смешанные данные) и извлекать из них полезную информацию. Такой анализ включает в себя распознавание закономерностей, выявление тенденций и предсказание будущих значений.
Классификация данных
Функции Классификации данных позволяют автоматически распределять информацию по заранее заданным категориям и параметрам, выявлять закономерности в массивах данных, определять принадлежность объектов к определённым группам и типам, а также структурировать неструктурированную информацию для дальнейшего анализа и обработки.
Кластеризация
Функции Кластеризации позволяют автоматически группировать данные по схожим характеристикам, выявлять скрытые паттерны и взаимосвязи между объектами, разделять массивы информации на значимые категории без предварительного обучения, что помогает в анализе и принятии решений.
Машинное обучение
Функции Машинного обучения позволяют автоматически обучать модели на основе больших массивов данных для повышения точности обработки информации.
Многопользовательский доступ
Возможность многопользовательской доступа в программную систему обеспечивает одновременную работу нескольких пользователей на одной базе данных под собственными учётными записями. Пользователи в этом случае могут иметь отличающиеся права доступа к данным и функциям программного обеспечения.
Мониторинг данных
Функции Мониторинга данных обеспечивают непрерывное отслеживание потоков информации, автоматическое выявление аномалий и отклонений в режиме реального времени, а также своевременное оповещение пользователей о критических изменениях и событиях в обрабатываемых данных.
Наличие API
Часто при использовании современного делового программного обеспечения возникает потребность автоматической передачи данных из одного ПО в другое. Например, может быть полезно автоматически передавать данные из Системы управления взаимоотношениями с клиентами (CRM) в Систему бухгалтерского учёта (БУ). Для обеспечения такого и подобных сопряжений программные системы оснащаются специальными Прикладными программными интерфейсами (англ. API, Application Programming Interface). С помощью таких API любые компетентные программисты смогут связать два программных продукта между собой для автоматического обмена информацией.
Обработка видео-данных
Функции обработки видео-данных позволяет системе работать с информацией в форме видео-потока при помощи методов искусственного интеллекта, проводить разбор, анализ или синтез (генерацию) информации.
Обработка визуально-графических данных
Функции обработки визуально-графических данных позволяет извлекать и генерировать информацию в виде графических данных, классифицировать, хранить и проводить первичный разбор полученной информации, преобразовывать или создавать новые графические материалы.
Обработка голосовых данных
Функции обработки голосовых данных позволяет работать с голосовыми данными, такими как распознавание речи, синтез речи и обработка естественного языка. Это позволяет создать системы, которые могут понимать и отвечать на голосовые запросы, а также генерировать речь на основе текста или других входных данных.
Обработка звуковых данных
Функции обработки звуковых данных (аудио-анализ) позволяет извлекать полезную информацию и смысл из звуковых сигналов, классифицировать, хранить и проводить первичный разбор полученных данных, а также генерировать аудиальную информацию.
Обработка структурированных данных
Функции обработки структурированных данных позволяет использовать для работы данные, которые организованы в виде форматированных хранилищ, баз данных, электронных таблиц и иных структурированных форматов, в которых элементы данных имеют адресацию для более эффективной обработки и анализа.
Обработка текстовых данных
Функции обработки данных текста представляет собой инструментарий для работы ИИ с информацией в виде текста путём структурирования исходного текста, анализа текстовых шаблонов (паттернов), оценки смысла (семантики) текста, а также применения текстовых генеративных алгоритмов.
Отчётность и аналитика
Наличие у продукта функций подготовки отчётности и/или аналитики позволяют получать систематизированные и визуализированные данные из системы для последующего анализа и принятия решений на основе данных.
Прогнозирование
Функции Прогнозирования позволяют строить предсказательные модели на основе исторических и текущих данных, выявлять тенденции развития процессов, оценивать вероятные сценарии будущего и определять потенциальные риски для принятия обоснованных управленческих решений.
Визуализация
Визуализация позволяет представлять сложные массивы данных в понятной графической форме, наглядно отображать взаимосвязи и закономерности, выявлять аномалии и тренды, облегчать анализ результатов обработки информации, а также обеспечивать эффективное взаимодействие между специалистами при интерпретации полученных данных.
Оптимизация процессов
Оптимизация процессов позволяет автоматизировать и улучшать бизнес-операции за счет анализа данных в реальном времени, выявления узких мест, прогнозирования результатов изменений, распределения ресурсов, настройки параметров работы системы и повышения общей эффективности выполнения задач.

6. Рекомендации по выбору Платформы интеллектуальной обработки данных

При выборе программного продукта из функционального класса Платформы интеллектуальной обработки данных (ПИОД) необходимо учитывать ряд ключевых факторов, которые определят пригодность решения для конкретных бизнес-задач. Прежде всего, следует оценить масштаб деятельности компании: для крупных корпораций с большим объёмом данных потребуются решения с высокой производительностью и масштабируемостью, в то время как для малого и среднего бизнеса могут подойти более простые и экономически эффективные варианты. Также важно учитывать отраслевые требования и специфику бизнеса — например, в финансовом секторе критически важна высокая точность прогнозов и соответствие регуляторным нормам, в то время как в розничной торговле акцент может быть сделан на скорости обработки данных и аналитике потребительских предпочтений. Не менее значимы технические ограничения, включая существующую ИТ-инфраструктуру, совместимость с другими системами, требования к безопасности и защите данных.

Ключевые аспекты при принятии решения:

  • совместимость с текущей ИТ-инфраструктурой и другими корпоративными системами (например, ERP, CRM);
  • возможности интеграции с источниками данных (например, базами данных, облачными хранилищами, системами сбора данных с IoT-устройств);
  • наличие инструментов для визуализации данных и создания отчётов (например, дашбордов, графиков, интерактивных панелей);
  • поддержка различных методов машинного обучения и алгоритмов анализа данных (например, регрессии, кластеризации, классификации);
  • возможности масштабирования системы в соответствии с ростом объёма данных и бизнес-потребностей;
  • уровень защиты данных и соответствие отраслевым стандартам безопасности (например, требованиям к обработке персональных данных, финансовым нормативам);
  • наличие механизмов обеспечения целостности и надёжности данных (например, резервного копирования, репликации, восстановления после сбоев);
  • поддержка распределённой обработки данных и работы с географически распределёнными узлами;
  • наличие функций для управления метаданными и обеспечения качества данных (например, инструменты для очистки данных, проверки их корректности, стандартизации форматов).

Кроме того, стоит обратить внимание на наличие у поставщика ПИОД квалифицированной технической поддержки и обучающих материалов, а также на опыт внедрения решения в компаниях со схожими бизнес-процессами. Важно оценить не только технические характеристики продукта, но и его способность решать конкретные бизнес-задачи, например, оптимизировать логистические цепочки, прогнозировать спрос на продукцию, выявлять мошеннические операции или анализировать поведение клиентов. Также необходимо учесть стоимость владения системой, включая лицензионные платежи, затраты на внедрение, обучение персонала и техническое обслуживание.

7. Выгоды, преимущества и польза от применения Платформы интеллектуальной обработки данных

Платформы интеллектуальной обработки данных (ПИОД) предоставляют организациям мощные инструменты для работы с данными, позволяя повысить эффективность бизнес-процессов, улучшить качество принимаемых решений и получить конкурентные преимущества. Среди ключевых преимуществ использования ПИОД можно выделить:

  • Автоматизация процессов ETL (извлечения, трансформации и загрузки данных). ПИОД позволяют автоматизировать рутинные операции с данными, сокращая время на их подготовку и минимизируя вероятность ошибок, что освобождает ресурсы для более сложных аналитических задач.

  • Углублённый анализ данных. Благодаря применению методов машинного обучения и искусственного интеллекта ПИОД обеспечивают возможности для выявления скрытых закономерностей и тенденций в данных, что способствует более точному прогнозированию и планированию.

  • Повышение скорости принятия решений. Быстрая обработка и анализ больших объёмов данных позволяют руководству получать актуальную информацию в режиме реального времени, что ускоряет процесс принятия обоснованных управленческих решений.

  • Улучшение качества данных. ПИОД обеспечивают механизмы очистки, валидации и нормализации данных, что повышает их качество и надёжность для последующего анализа и использования в бизнес-процессах.

  • Визуализация и представление результатов анализа. ПИОД предлагают инструменты для визуализации данных и результатов анализа, что облегчает восприятие информации и способствует более эффективному общению между сотрудниками и отделами.

  • Масштабируемость и гибкость решений. Платформы позволяют масштабировать обработку данных в соответствии с растущими потребностями бизнеса и адаптировать решения под изменяющиеся требования и условия рынка.

  • Оптимизация затрат. Автоматизация процессов обработки данных и повышение эффективности использования информации позволяют сократить затраты на аналитические ресурсы и улучшить рентабельность бизнес-процессов.

8. Виды Платформы интеллектуальной обработки данных

Системы анализа и синтеза речи
Системы анализа и синтеза речи (САСР, англ. Speech Analysis and Synthesis Systems, SAS) – это комплекс технологий и программных решений, предназначенных для обработки речевой информации. Они позволяют анализировать, распознавать, синтезировать и преобразовывать человеческую речь с помощью алгоритмов машинного обучения, обработки естественного языка и других методов.
Системы видеоаналитики
Программные системы видеоаналитики (ВА, англ. Video Content Analysis, VCA) предназначены для интеллектуальной обработки видеопотока и извлечения из него полезных данных. С помощью данного программного обеспечения может обрабатываться самая разнообразная информация от видеопотока от уличных камер умного города до данных от видеокамеры умного станка для контроля качества продукции.
Системы обработки естественного языка
Системы обработки естественного языка (СОЕЯ, англ. Natural language processing, NLP) помогают пользователям получать информацию как из структурированных, так и из неструктурированных текстовых данных, включая анализ настроения, ключевых фраз, языка, тем и шаблонов. Эти решения используют машинное обучение, чтобы представить данные в наиболее верной интерпретации.
Системы оптического распознавания символов
Программные системы и сервисы оптического распознавания символов (ОРС, англ. Optical character recognition, OCR) предназначены для сканирования текста, обработки содержимого и извлечения полезных данных из документов различных видов. С помощью такого программного обеспечения, как правило, обрабатываются счета-фактуры, акты, накладные, квитанции, клиентские формы, опросные листы и документы сотрудников.
Системы компьютерного зрения
Программные системы компьютерного зрения (СКЗ, англ. Computer vision, CV) предназначены для обработки графической информации и извлечения из неё полезных данных. С помощью такого программного обеспечения может обрабатываться самая разнообразная информация от видеопотока в супермаркете до данных фармацевтических экспериментов в научной лаборатории.
Системы контент-анализа
Программные сервисы и системы контент-анализа (СКА, англ. Content Analysis Systems, CA) позволяют выполнять качественный и количественный анализ медиа-содержимого - исследовать частоту упоминаний, тональность, распределение рассматриваемых тем. Анализ может производиться в отношении различных медиа-каналов распределения контента: телевидения, радио, газет, журналов, онлайн-СМИ, социальных сетей, книг, периодических изданий, кинофильмов, игр или закрытых информационных баз.
Системы распознавания речи
Программы и системы распознавания речи (СРР, англ. Speech Recognition Systems, SRS) используется для преобразования разговорного языка в текстовую информацию с помощью алгоритмов распознавания речи.

9. Отличительные черты Платформы интеллектуальной обработки данных

Для того, чтобы быть представленными на рынке Платформы интеллектуальной обработки данных, системы должны иметь следующие функциональные возможности:

  • автоматизация процессов ETL (извлечения, трансформации и загрузки данных), позволяющая эффективно работать с разнородными источниками данных,
  • реализация алгоритмов машинного обучения и методов искусственного интеллекта для выявления закономерностей и аномалий в данных,
  • механизмы глубокого анализа данных с применением статистических и математических методов,
  • инструменты для построения прогнозных моделей на основе исторических данных и текущих трендов,
  • средства визуализации аналитических данных для наглядного представления результатов обработки информации.

10. Тенденции в области Платформы интеллектуальной обработки данных

В 2025 году на рынке платформ интеллектуальной обработки данных (ПИОД) можно ожидать усиления тенденций, связанных с повышением эффективности обработки и анализа данных, расширением возможностей интеграции с другими системами, а также с ростом внимания к вопросам безопасности и этичного использования данных; продолжат развиваться методы и алгоритмы машинного обучения, появятся новые решения для работы с мультимодальными данными и улучшения интерактивности пользовательских интерфейсов.

  • Развитие генеративных моделей. Усовершенствование алгоритмов генеративных моделей, позволяющих создавать новые данные на основе анализа существующих, что найдёт применение в сферах моделирования, тестирования и создания контента.

  • Интеграция с системами интернета вещей (IoT). Расширение возможностей интеграции ПИОД с устройствами IoT для сбора, обработки и анализа данных в реальном времени в различных отраслях, от промышленности до бытового сектора.

  • Усиление фокуса на объяснимость моделей. Разработка методов и инструментов, позволяющих лучше интерпретировать результаты работы моделей машинного обучения, что повысит доверие пользователей и облегчит соответствие нормативным требованиям.

  • Повышение уровня безопасности данных. Внедрение передовых криптографических методов и механизмов защиты данных, а также разработка решений для обеспечения конфиденциальности и целостности информации при её обработке.

  • Развитие технологий обработки мультимодальных данных. Создание инструментов для одновременной работы с текстовыми, визуальными и аудиоданными, что позволит получать более полное и всестороннее представление о предметной области.

  • Автоматизация MLOps-процессов. Дальнейшее развитие инструментов и платформ для автоматизации жизненного цикла машинного обучения, включая развёртывание, мониторинг и обслуживание моделей в производственной среде.

  • Улучшение интерактивности и визуализации. Разработка более совершенных инструментов визуализации данных и интерактивных дашбордов, которые позволят пользователям быстрее анализировать информацию и принимать обоснованные решения.

11. В каких странах разрабатываются Платформы интеллектуальной обработки данных

Компании-разработчики, создающие intelligent-data-processing-platforms, работают в различных странах. Ниже перечислены программные продукты данного класса по странам происхождения
Россия
PolyAnalyst, Brand Analytics, Медиалогия SM, Инлексис Голосовой бот, Медиалогия PR, МТС Облачное видеонаблюдение, Linkage ABI, МТС Exolve Роботы, ITFB EasyDoc, Entera, IQPLATFORM, IQBuzz, Видеоинтеллект, Биорг.KYC, 3i Speech Transcriptor, Avalanche Cyber Analist, DataLocator, Smart ID Engine, SEES, Smart Code Engine, Smart Document Engine, Yandex SpeechKit, Yandex Vision, 3i Search Platform, Naumen KnowledgeCat, ContentCapture, 3i NLP Platform, Xeoma, InSentry, Extractor.expert, LARGA.Videoserver, 3i VoxKit
Финляндия
M-Brain Intelligence Plaza
США
ABBYY FineReader, Diffbot, Tesseract OCR
Нидерланды
Elasticsearch

Сравнение Платформы интеллектуальной обработки данных

Систем: 3

Tesseract OCR

Google

Логотип системы Tesseract OCR

Tesseract — это программный движок с открытым исходным кодом, позволяющий распознавать символы с поддержкой кодировки Unicode и возможностью распознавания более 130 языков, а также с возможностью дополнения для распознавания других языков.

Diffbot

Diffbot

Логотип системы Diffbot

Diffbot — это онлайн-сервис, включающий в себя набор инструментов (Extraction APIs, Knowledge Graph, Crawlbot) для превращения неструктурированных веб-данных в структурированную и полезную для бизнеса информацию.

ABBYY FineReader

ABBYY

Логотип системы ABBYY FineReader

ABBYY FineReader — это универсальное программное приложение для распознавания текста, предназначенное для повышения производительности бизнеса, быстрого захвата документов на бумажных носителях и получения на выходе оцифрованных файлв в форматах PDF, DOC и прочих.

Руководство по покупке Платформы интеллектуальной обработки данных

Что такое Платформы интеллектуальной обработки данных

Платформы интеллектуальной обработки данных (ПИОД, англ. Intelligent Data Processing Platforms, IDP) – это комплексные решения, предназначенные для анализа и обработки больших объёмов данных с использованием методов машинного обучения, искусственного интеллекта и других технологий. Они позволяют автоматизировать процессы извлечения, трансформации и загрузки данных, а также обеспечивают возможности для глубокого анализа, прогнозирования и визуализации информации.

Зачем бизнесу Платформы интеллектуальной обработки данных

Интеллектуальная обработка данных как деятельность представляет собой комплекс мероприятий, направленных на анализ и обработку значительных объёмов информации с применением технологий искусственного интеллекта, машинного обучения и других современных методов. В рамках этой деятельности осуществляется автоматизация процессов извлечения данных из различных источников, их трансформация в удобный для анализа формат и загрузка в системы для последующей обработки, а также реализуются возможности глубокого анализа, выявления закономерностей, прогнозирования тенденций и визуализации полученных результатов. Это позволяет организациям принимать обоснованные управленческие решения, оптимизировать бизнес-процессы и повышать эффективность работы.

Среди ключевых аспектов интеллектуальной обработки данных можно выделить:

  • работу с неструктурированными и полуструктурированными данными,
  • применение алгоритмов машинного обучения для выявления скрытых закономерностей,
  • использование методов обработки естественного языка для анализа текстовых данных,
  • построение прогнозных моделей на основе исторических данных,
  • визуализацию аналитических данных для облегчения их восприятия и интерпретации,
  • интеграцию с различными источниками данных и системами хранения информации.

Важную роль в процессе интеллектуальной обработки данных играют цифровые (программные) решения, которые обеспечивают необходимую инфраструктуру и инструменты для реализации всех этапов работы с данными — от их сбора до анализа и визуализации результатов. Такие решения позволяют существенно повысить скорость и качество обработки информации, снизить трудозатраты и минимизировать вероятность ошибок, связанных с человеческим фактором.

Назначение и цели использования Платформы интеллектуальной обработки данных

Платформы интеллектуальной обработки данных предназначены для анализа и обработки значительных объёмов данных с применением методов машинного обучения и технологий искусственного интеллекта. Они автоматизируют процессы извлечения данных из различных источников, их трансформации в удобный для анализа формат и загрузки в целевые системы, что позволяет существенно сократить время и ресурсы, необходимые для предварительной обработки информации, и повысить качество данных для последующего анализа.

Кроме того, платформы интеллектуальной обработки данных обеспечивают расширенные возможности для глубокого анализа информации, построения прогностических моделей и визуализации результатов. С их помощью можно выявлять скрытые закономерности и тренды в данных, осуществлять прогнозирование на основе исторических данных, создавать интерактивные дашборды и отчёты для наглядного представления информации, что способствует более обоснованному принятию решений и повышению эффективности бизнес-процессов.

Основные пользователи Платформы интеллектуальной обработки данных

Платформы интеллектуальной обработки данных в основном используют следующие группы пользователей:

  • крупные корпорации и холдинги для анализа рыночных тенденций, оптимизации бизнес-процессов и повышения эффективности управления ресурсами;
  • финансовые учреждения и страховые компании для оценки рисков, выявления мошеннических операций и прогнозирования финансовых показателей;
  • компании в сфере электронной коммерции для анализа поведения пользователей, персонализации предложений и оптимизации ассортимента товаров;
  • предприятия промышленности и логистики для оптимизации цепочек поставок, прогнозирования спроса и управления запасами;
  • научно-исследовательские организации и университеты для анализа больших данных в научных исследованиях и разработки новых технологий;
  • государственные учреждения и органы власти для анализа социально-экономических показателей, оптимизации работы государственных сервисов и повышения эффективности управления ресурсами.
Обзор основных функций и возможностей Платформы интеллектуальной обработки данных
Администрирование
Возможность администрирования позволяет осуществлять настройку и управление функциональностью системы, а также управление учётными записями и правами доступа к системе.
Дообучение
Функции Дообучения позволяют улучшить качество работы системы ИИ или модели, обучая её на дополнительных данных со стороны пользователя. Это может быть полезно, если модель не справляется с некоторыми задачами, если требуется улучшить ее точность или обеспечить специализацию для решения узконаправленных задач. Дообучение может быть выполнено на основе новых данных или на уже имеющихся данных, которые были ранее не использованы для обучения модели.
Импорт/экспорт данных
Возможность импорта и/или экспорта данных в продукте позволяет загрузить данные из наиболее популярных файловых форматов или выгрузить рабочие данные в файл для дальнейшего использования в другом ПО.
Интеграция данных
Функции Интеграции данных позволяют объединять и синхронизировать информацию из различных источников и форматов в единую систему, обеспечивая её целостность, актуальность и доступность для последующего анализа и обработки в режиме реального времени.
Интеллектуальный анализ данных
Функция Интеллектуальный анализ данных в ИИ позволяет анализировать большие объемы данных в различных формах (структурированные данные, текст, изображения, аудио, видео или смешанные данные) и извлекать из них полезную информацию. Такой анализ включает в себя распознавание закономерностей, выявление тенденций и предсказание будущих значений.
Классификация данных
Функции Классификации данных позволяют автоматически распределять информацию по заранее заданным категориям и параметрам, выявлять закономерности в массивах данных, определять принадлежность объектов к определённым группам и типам, а также структурировать неструктурированную информацию для дальнейшего анализа и обработки.
Кластеризация
Функции Кластеризации позволяют автоматически группировать данные по схожим характеристикам, выявлять скрытые паттерны и взаимосвязи между объектами, разделять массивы информации на значимые категории без предварительного обучения, что помогает в анализе и принятии решений.
Машинное обучение
Функции Машинного обучения позволяют автоматически обучать модели на основе больших массивов данных для повышения точности обработки информации.
Многопользовательский доступ
Возможность многопользовательской доступа в программную систему обеспечивает одновременную работу нескольких пользователей на одной базе данных под собственными учётными записями. Пользователи в этом случае могут иметь отличающиеся права доступа к данным и функциям программного обеспечения.
Мониторинг данных
Функции Мониторинга данных обеспечивают непрерывное отслеживание потоков информации, автоматическое выявление аномалий и отклонений в режиме реального времени, а также своевременное оповещение пользователей о критических изменениях и событиях в обрабатываемых данных.
Наличие API
Часто при использовании современного делового программного обеспечения возникает потребность автоматической передачи данных из одного ПО в другое. Например, может быть полезно автоматически передавать данные из Системы управления взаимоотношениями с клиентами (CRM) в Систему бухгалтерского учёта (БУ). Для обеспечения такого и подобных сопряжений программные системы оснащаются специальными Прикладными программными интерфейсами (англ. API, Application Programming Interface). С помощью таких API любые компетентные программисты смогут связать два программных продукта между собой для автоматического обмена информацией.
Обработка видео-данных
Функции обработки видео-данных позволяет системе работать с информацией в форме видео-потока при помощи методов искусственного интеллекта, проводить разбор, анализ или синтез (генерацию) информации.
Обработка визуально-графических данных
Функции обработки визуально-графических данных позволяет извлекать и генерировать информацию в виде графических данных, классифицировать, хранить и проводить первичный разбор полученной информации, преобразовывать или создавать новые графические материалы.
Обработка голосовых данных
Функции обработки голосовых данных позволяет работать с голосовыми данными, такими как распознавание речи, синтез речи и обработка естественного языка. Это позволяет создать системы, которые могут понимать и отвечать на голосовые запросы, а также генерировать речь на основе текста или других входных данных.
Обработка звуковых данных
Функции обработки звуковых данных (аудио-анализ) позволяет извлекать полезную информацию и смысл из звуковых сигналов, классифицировать, хранить и проводить первичный разбор полученных данных, а также генерировать аудиальную информацию.
Обработка структурированных данных
Функции обработки структурированных данных позволяет использовать для работы данные, которые организованы в виде форматированных хранилищ, баз данных, электронных таблиц и иных структурированных форматов, в которых элементы данных имеют адресацию для более эффективной обработки и анализа.
Обработка текстовых данных
Функции обработки данных текста представляет собой инструментарий для работы ИИ с информацией в виде текста путём структурирования исходного текста, анализа текстовых шаблонов (паттернов), оценки смысла (семантики) текста, а также применения текстовых генеративных алгоритмов.
Отчётность и аналитика
Наличие у продукта функций подготовки отчётности и/или аналитики позволяют получать систематизированные и визуализированные данные из системы для последующего анализа и принятия решений на основе данных.
Прогнозирование
Функции Прогнозирования позволяют строить предсказательные модели на основе исторических и текущих данных, выявлять тенденции развития процессов, оценивать вероятные сценарии будущего и определять потенциальные риски для принятия обоснованных управленческих решений.
Визуализация
Визуализация позволяет представлять сложные массивы данных в понятной графической форме, наглядно отображать взаимосвязи и закономерности, выявлять аномалии и тренды, облегчать анализ результатов обработки информации, а также обеспечивать эффективное взаимодействие между специалистами при интерпретации полученных данных.
Оптимизация процессов
Оптимизация процессов позволяет автоматизировать и улучшать бизнес-операции за счет анализа данных в реальном времени, выявления узких мест, прогнозирования результатов изменений, распределения ресурсов, настройки параметров работы системы и повышения общей эффективности выполнения задач.
Рекомендации по выбору Платформы интеллектуальной обработки данных

При выборе программного продукта из функционального класса Платформы интеллектуальной обработки данных (ПИОД) необходимо учитывать ряд ключевых факторов, которые определят пригодность решения для конкретных бизнес-задач. Прежде всего, следует оценить масштаб деятельности компании: для крупных корпораций с большим объёмом данных потребуются решения с высокой производительностью и масштабируемостью, в то время как для малого и среднего бизнеса могут подойти более простые и экономически эффективные варианты. Также важно учитывать отраслевые требования и специфику бизнеса — например, в финансовом секторе критически важна высокая точность прогнозов и соответствие регуляторным нормам, в то время как в розничной торговле акцент может быть сделан на скорости обработки данных и аналитике потребительских предпочтений. Не менее значимы технические ограничения, включая существующую ИТ-инфраструктуру, совместимость с другими системами, требования к безопасности и защите данных.

Ключевые аспекты при принятии решения:

  • совместимость с текущей ИТ-инфраструктурой и другими корпоративными системами (например, ERP, CRM);
  • возможности интеграции с источниками данных (например, базами данных, облачными хранилищами, системами сбора данных с IoT-устройств);
  • наличие инструментов для визуализации данных и создания отчётов (например, дашбордов, графиков, интерактивных панелей);
  • поддержка различных методов машинного обучения и алгоритмов анализа данных (например, регрессии, кластеризации, классификации);
  • возможности масштабирования системы в соответствии с ростом объёма данных и бизнес-потребностей;
  • уровень защиты данных и соответствие отраслевым стандартам безопасности (например, требованиям к обработке персональных данных, финансовым нормативам);
  • наличие механизмов обеспечения целостности и надёжности данных (например, резервного копирования, репликации, восстановления после сбоев);
  • поддержка распределённой обработки данных и работы с географически распределёнными узлами;
  • наличие функций для управления метаданными и обеспечения качества данных (например, инструменты для очистки данных, проверки их корректности, стандартизации форматов).

Кроме того, стоит обратить внимание на наличие у поставщика ПИОД квалифицированной технической поддержки и обучающих материалов, а также на опыт внедрения решения в компаниях со схожими бизнес-процессами. Важно оценить не только технические характеристики продукта, но и его способность решать конкретные бизнес-задачи, например, оптимизировать логистические цепочки, прогнозировать спрос на продукцию, выявлять мошеннические операции или анализировать поведение клиентов. Также необходимо учесть стоимость владения системой, включая лицензионные платежи, затраты на внедрение, обучение персонала и техническое обслуживание.

Выгоды, преимущества и польза от применения Платформы интеллектуальной обработки данных

Платформы интеллектуальной обработки данных (ПИОД) предоставляют организациям мощные инструменты для работы с данными, позволяя повысить эффективность бизнес-процессов, улучшить качество принимаемых решений и получить конкурентные преимущества. Среди ключевых преимуществ использования ПИОД можно выделить:

  • Автоматизация процессов ETL (извлечения, трансформации и загрузки данных). ПИОД позволяют автоматизировать рутинные операции с данными, сокращая время на их подготовку и минимизируя вероятность ошибок, что освобождает ресурсы для более сложных аналитических задач.

  • Углублённый анализ данных. Благодаря применению методов машинного обучения и искусственного интеллекта ПИОД обеспечивают возможности для выявления скрытых закономерностей и тенденций в данных, что способствует более точному прогнозированию и планированию.

  • Повышение скорости принятия решений. Быстрая обработка и анализ больших объёмов данных позволяют руководству получать актуальную информацию в режиме реального времени, что ускоряет процесс принятия обоснованных управленческих решений.

  • Улучшение качества данных. ПИОД обеспечивают механизмы очистки, валидации и нормализации данных, что повышает их качество и надёжность для последующего анализа и использования в бизнес-процессах.

  • Визуализация и представление результатов анализа. ПИОД предлагают инструменты для визуализации данных и результатов анализа, что облегчает восприятие информации и способствует более эффективному общению между сотрудниками и отделами.

  • Масштабируемость и гибкость решений. Платформы позволяют масштабировать обработку данных в соответствии с растущими потребностями бизнеса и адаптировать решения под изменяющиеся требования и условия рынка.

  • Оптимизация затрат. Автоматизация процессов обработки данных и повышение эффективности использования информации позволяют сократить затраты на аналитические ресурсы и улучшить рентабельность бизнес-процессов.

Виды Платформы интеллектуальной обработки данных
Системы анализа и синтеза речи
Системы анализа и синтеза речи (САСР, англ. Speech Analysis and Synthesis Systems, SAS) – это комплекс технологий и программных решений, предназначенных для обработки речевой информации. Они позволяют анализировать, распознавать, синтезировать и преобразовывать человеческую речь с помощью алгоритмов машинного обучения, обработки естественного языка и других методов.
Системы видеоаналитики
Программные системы видеоаналитики (ВА, англ. Video Content Analysis, VCA) предназначены для интеллектуальной обработки видеопотока и извлечения из него полезных данных. С помощью данного программного обеспечения может обрабатываться самая разнообразная информация от видеопотока от уличных камер умного города до данных от видеокамеры умного станка для контроля качества продукции.
Системы обработки естественного языка
Системы обработки естественного языка (СОЕЯ, англ. Natural language processing, NLP) помогают пользователям получать информацию как из структурированных, так и из неструктурированных текстовых данных, включая анализ настроения, ключевых фраз, языка, тем и шаблонов. Эти решения используют машинное обучение, чтобы представить данные в наиболее верной интерпретации.
Системы оптического распознавания символов
Программные системы и сервисы оптического распознавания символов (ОРС, англ. Optical character recognition, OCR) предназначены для сканирования текста, обработки содержимого и извлечения полезных данных из документов различных видов. С помощью такого программного обеспечения, как правило, обрабатываются счета-фактуры, акты, накладные, квитанции, клиентские формы, опросные листы и документы сотрудников.
Системы компьютерного зрения
Программные системы компьютерного зрения (СКЗ, англ. Computer vision, CV) предназначены для обработки графической информации и извлечения из неё полезных данных. С помощью такого программного обеспечения может обрабатываться самая разнообразная информация от видеопотока в супермаркете до данных фармацевтических экспериментов в научной лаборатории.
Системы контент-анализа
Программные сервисы и системы контент-анализа (СКА, англ. Content Analysis Systems, CA) позволяют выполнять качественный и количественный анализ медиа-содержимого - исследовать частоту упоминаний, тональность, распределение рассматриваемых тем. Анализ может производиться в отношении различных медиа-каналов распределения контента: телевидения, радио, газет, журналов, онлайн-СМИ, социальных сетей, книг, периодических изданий, кинофильмов, игр или закрытых информационных баз.
Системы распознавания речи
Программы и системы распознавания речи (СРР, англ. Speech Recognition Systems, SRS) используется для преобразования разговорного языка в текстовую информацию с помощью алгоритмов распознавания речи.
Отличительные черты Платформы интеллектуальной обработки данных

Для того, чтобы быть представленными на рынке Платформы интеллектуальной обработки данных, системы должны иметь следующие функциональные возможности:

  • автоматизация процессов ETL (извлечения, трансформации и загрузки данных), позволяющая эффективно работать с разнородными источниками данных,
  • реализация алгоритмов машинного обучения и методов искусственного интеллекта для выявления закономерностей и аномалий в данных,
  • механизмы глубокого анализа данных с применением статистических и математических методов,
  • инструменты для построения прогнозных моделей на основе исторических данных и текущих трендов,
  • средства визуализации аналитических данных для наглядного представления результатов обработки информации.
Тенденции в области Платформы интеллектуальной обработки данных

В 2025 году на рынке платформ интеллектуальной обработки данных (ПИОД) можно ожидать усиления тенденций, связанных с повышением эффективности обработки и анализа данных, расширением возможностей интеграции с другими системами, а также с ростом внимания к вопросам безопасности и этичного использования данных; продолжат развиваться методы и алгоритмы машинного обучения, появятся новые решения для работы с мультимодальными данными и улучшения интерактивности пользовательских интерфейсов.

  • Развитие генеративных моделей. Усовершенствование алгоритмов генеративных моделей, позволяющих создавать новые данные на основе анализа существующих, что найдёт применение в сферах моделирования, тестирования и создания контента.

  • Интеграция с системами интернета вещей (IoT). Расширение возможностей интеграции ПИОД с устройствами IoT для сбора, обработки и анализа данных в реальном времени в различных отраслях, от промышленности до бытового сектора.

  • Усиление фокуса на объяснимость моделей. Разработка методов и инструментов, позволяющих лучше интерпретировать результаты работы моделей машинного обучения, что повысит доверие пользователей и облегчит соответствие нормативным требованиям.

  • Повышение уровня безопасности данных. Внедрение передовых криптографических методов и механизмов защиты данных, а также разработка решений для обеспечения конфиденциальности и целостности информации при её обработке.

  • Развитие технологий обработки мультимодальных данных. Создание инструментов для одновременной работы с текстовыми, визуальными и аудиоданными, что позволит получать более полное и всестороннее представление о предметной области.

  • Автоматизация MLOps-процессов. Дальнейшее развитие инструментов и платформ для автоматизации жизненного цикла машинного обучения, включая развёртывание, мониторинг и обслуживание моделей в производственной среде.

  • Улучшение интерактивности и визуализации. Разработка более совершенных инструментов визуализации данных и интерактивных дашбордов, которые позволят пользователям быстрее анализировать информацию и принимать обоснованные решения.

В каких странах разрабатываются Платформы интеллектуальной обработки данных
Компании-разработчики, создающие intelligent-data-processing-platforms, работают в различных странах. Ниже перечислены программные продукты данного класса по странам происхождения
Россия
PolyAnalyst, Brand Analytics, Медиалогия SM, Инлексис Голосовой бот, Медиалогия PR, МТС Облачное видеонаблюдение, Linkage ABI, МТС Exolve Роботы, ITFB EasyDoc, Entera, IQPLATFORM, IQBuzz, Видеоинтеллект, Биорг.KYC, 3i Speech Transcriptor, Avalanche Cyber Analist, DataLocator, Smart ID Engine, SEES, Smart Code Engine, Smart Document Engine, Yandex SpeechKit, Yandex Vision, 3i Search Platform, Naumen KnowledgeCat, ContentCapture, 3i NLP Platform, Xeoma, InSentry, Extractor.expert, LARGA.Videoserver, 3i VoxKit
Финляндия
M-Brain Intelligence Plaza
США
ABBYY FineReader, Diffbot, Tesseract OCR
Нидерланды
Elasticsearch
Soware логотип
Soware является основным источником сведений о прикладном программном обеспечении для предприятий. Используя наш обширный каталог категорий и программных продуктов, лица, принимающие решения в России и странах СНГ получают бесплатный инструмент для выбора и сравнения систем от разных разработчиков
Соваре, ООО Санкт-Петербург, Россия info@soware.ru
2025 Soware.Ru - Умный выбор систем для бизнеса